A TABU SEARCH METAHEURISTIC
FOR THE AIR REFUELING
TANKER ASSIGNMENT PROBLEM

THESIS
Shay R. Capehart, First Lieutenant, USAF

AFIT/GOR/ENS/00M-07

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

'AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASEDISTRIBUTION UNLIMITED.

20000613 106

DTIC QUALITY INSPECTED 4

. Form Approved
REPORT DOCUMENTATION PAGE o%;g‘ ng 07‘:,1-01 88

Public reporting burden for this collection of infomation is estimated to average 1 hour per response, induding the ime for reviewing instructions,
searching exbting data sources, gathering and maintaining the data needed, and completing and review ing the collection of information. Send|
comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Inforation Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arington, VA
22202-4302, and to the Office of Management and Budget, Paperw ork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES COV ERED
blank) March 2000 Master’s Thesis
1. TITLEAND SUBTITLE * FUNDING NUMBERS
A TABU SEARCH METAHEUSTIC FOR THE AIR REFUELING T ANKER ASSIGNMEN]
PROBLEM
*AUTHOR(S)

Shay R. Capehart, First Liewtenant, USAF

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 8. PERFORMING ORGA NIZATION
REPORT NUMBER
Air Force Institute of Technology
Graduate School of Engineering and Management (ART/EN) AFIT/GOR/ENS/00M-07
2950 P Street, Building 640
WPAFB OH 45433-7765
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
HQ AMC/XPY AGENCY REPORT NUMBER
402 Scott Drive, Unit 3L3
Scott AFB, IL 62225-5307
DSN: 576-5954

11. SUPPLEMENTARY NOTES

Dr. lamesT. Moore, ART/ENJames.Moore @ afit.af milo37) 255-6565

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FORPUBLIC RELEASE; DISTRIBUTION UNLIMITED.

ABSTRACT Maximum 200 Words)

a joint effort between Air Mobility Command (AMC) and the Air Force Institute of Technology, we present a Tanker Assignment Problem (T AP) Tool capable of
providing tanker mission plans for deployment scenarios. Due to the complex nature of extracting a mission plan fiom the Combined Mating and Ranging Planning
System (CMARPS), AMC requires a tool to provide similar results in a simpler and less time consuming manner. The tool developed allows AMC to input several
receiver groups consisting of various aircraft types and numbers. Each receiver group contains a point of origin and destination, with the option of providing one
waypoint along the path. In addition, each group has a ready to load date (RLD) and required delivery date (RDD). The user may also specify the locations of military
tanker aircraft. The main goal of this tool is to assign the tankers to the different refireling points of the receiver groups so that all receiver groups arrive before their
RDD. Secondary goals include the reuse of tankers and limiting the total flight distance for all tanker aircrat. The TAPTool uses the heuristic technique tabu search
to determine an assignment of tankers to receiver groups during a deployment. '

14, SUBJECT TERMS 15. NUMBER OF PAGES
Tabu Search, Heurigtics, Metabeuritics, T anker Scheduling, Assignment Problem 97
16. PRICE CODE

OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNC

17. SECURITY CLASSIFICATIOT 18. SECURITY CLASSIFICATIOT 19. SECURITY CLASSIFICATION | 20. LMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the United States Air Force,
Department of Defense, or the United States Government.

AFIT/GOR/ENS/00M-07

A TABU SEARCH METAHEURISTIC FOR THE AIR REFUELING
TANKER ASSIGNMENT PROBLEM

THESIS

Presented to the Faculty
Department of Operational Sciences
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Operations Research
Shay R. Capehart, B.S.
First Lieutenant, USAF

March 2000

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GOR/ENS/00M-07

A TABU SEARCH METAHEURISTIC FOR THE

AIR REFUELING TANKER ASSIGNMENT PROBLEM

Shay R. Capehart, B.S.
First Lieutenant, USAF

Approved:

Qﬂ%’% T 7, Caers | 6 M 00

Co-Advisor James T. Moore, Ph.D. date
Associate Professor of Operations Research
Department of Operational Sciences
Air Force Institute of Technology

Cocponditocsh (o Wesi 80

Co-Advisor Raymond Hill, Major, USAF date
Assistant Professor of Operations Research
Department of Operational Sciences
Air Force Institute of Technology

Acknowledgements

I would like to thank my advisors Dr. Moore and Maj .’ Hill for patiently reading
the many thesis drafts I went through to reach this goal. Further thanks go to the rest of |
the ENS faculty for providing me with the knowledge to complete the tasks needed for
~ this thesis. The quality of instruction I received from my AFIT classes was far superior
to any of the classes I have taken from civilian schools. Thanks go to Dr. Barnes at the
University of Texas in Austin for introducing me to the joys of Tabu Search. Without
TS, I would still be searching for that optimum answer. Thank you Maj. Ryer and AMC
for providing me with the information needed to make my code run accurately.

A special thanks goes to my friends and familiy. To Chris, Paige, Rob, Gaybe,
and Shane, you gave me a social life I thought I would miss during graduate school. To
Nicholas, you were always there when I heeded you. Let’s contiﬁue to support each
other in New Mexico. Finally, to my family. I could not imagine these last 18 months

without the support of my parents and Karl. Ilove you all.

Shay R. Capehart

il

Table of Contents

Acknowledgements ii
List of Figures iv
List of Tables v
Abstract vi
Chapter 1. Background and Statement of the Problem 1
1.1 BACKEIOUNA c.vuvvveeeececeeeescecncnisisesesesisis i sstsas st bsnen s en st st ase e ss e e b sns s sn s ssa s s ssssanasasesaesenearars 1

1.2 Problem SEALEIMENLTccveeeeerveereerercrrreresereserestesesssusssesssesssmsssssssessessersssssssssssssasssasasssssseassssnsssasssesns 2

1.3 SCOPC cvveeereeirererrescnerietstsssasstssae s as s b sae b s s e s s a b s bbb et s s e R s a s s sReR e S e 3

1.4 Contribution Of RESEAICH......ccvccveveeerrenrennieerecseseesisssescsesere e saessessessessssssnesesasessessssessssntonsssssssensans 4

1.5 REPOTt OVETVIEW ...oceeerniiriiriiemriensrennetsissssesess s s ssssssssassssssssssas s ssssas e e se s s sesesases st ssssnsssasas s 4
Chapter 2. Literature Review 5
2.1 Tanker SCheduHNg TOOIS ...cccovrerureremeeeriirireriniiicc ittt sss s s ss e snsssssa e asaesesnssssssnenes 5

2.1.1 Combined Mating And Ranging Planning System (CMARPS) 5

2.1.2 Quick Look Tool for Tanker Deployment.... 6

2.2 HeuriStic APPIOACHESceeiimimieiiieitiriietctee et ess st st sabssasasesassnenesesesesssassssesnssass 12

2.2.1 Tabu Search. ettt b et s 13

2.3 CONCIUSION.eerreererrerererrerneesussesoseseesteesrsaesstesstesesressassnestnessnssnessansssasesssasnasssssessassnssnsessssssessens 17
Chapter 3. Methodology 18
3.1 Solution REPreSENtationcovveeiirieririermreieierireeiessstsrstens e st stssssesossssssnssnesessssestsassssesasnses 18

3.2 Greedy Construction HEUTISLICcoveviririrsinniertsiiiseenescssmescsesessesssssssssesssssssssssssssssssesssessesssssans 20

3.3 SOLION REPIESENLALIONocuvrvvririniiicicuraicnitnic ettt rs s snsse s st sesssas e nessesssnssassonensnsanes 20

3.4 MiSSI0N EVAIUALION. ...cvereerereeeererresenseecetesereecntsstesssossssssssssssnsssssssessssssessssssssnsasassnnessasssssssersesssens 20

3.5 Tabul IMPIEMENLALIONcovereeerieriririeireierietsiesiistssraerresese et srebessssssesersssasasassasssnssasasesassssssnsssnsasas 23

3.5.1 Tabu Search Methods...........ccovvvrveernencnnne reresessrssanenesnssaenns 24

3.6 TAP T00] IMPIEIMENLAtION......ccviiiirriiriiiiecerereistnreresas s e seseenesssme e ssstesessasansssnssssnasesassnessonsses 25

3.7 Measurement Of RESUILScccvevverrerrereereernecssesisesneessssesnessneseresesssesssossessesssossasssrssssensessasssssssessens 29
Chapter 4. Results and Conclusions 30
4.1 Southeast Asia Deployment.........ccccvemerenruennsd eteetertete ettt s et as s s ebe et s sa s R e e e R et bR bR s b s bRt en 31

4.1.1 Tabu Tenure Comparison for Southeast Deploymentcooeeveriririsnenne .37

4.1.2 Tabu Search Method Comparison for Southeast DEplOYmMENL.......ccoeviireemrnniimnnnsenirieessenssensereninnens 39

4.2 Middle East DEPIOYINENt......ccoeeeeevririereiririninnniesnissntriessnss et sssssssssstsssessnessusassassssstsssesesesasens 40

4.2.1 Tabu Tenure Comparison for Middle East Deployment...... 46

4.2.2 Tabu Search Method Comparison for Middle East Deployment ...48

4.3 CMARPS VS. TAP TOOL....ccceocirirectiiiintceenietnisinnsees e sarsessessesessssses s sesserasensssssssobessasssarens 50

4.4 CONCIUSION......eovverreerreeeseereesiersisesesrsesssesisesnestsestossssstosssssisssssssssesssesasasnsssssssesssssesssssssassessnesnnessassasas 52

4.4.1 Important characteristics demonstrated in thesis........cccecviiveiienens 52

4.4.2 Problems with the TAP TOOL......ccceereeeiriinniiiiiiesasitaisesessimssisisssnsssassionsssssesesssssasssssassensnsnes 53
Chapter 5. 56
5.1 ReCOMIMENAALIONSccuveeeeererrrerreerrereeesesteesessaressesessssssassaesssessssssessnssasssssessnsssssassssnsssssnsessssnsenseas 56
Appendix A 58
Bibliography 86

it

List of Figures

Figure 1: Example deployment flight pathsc.ooveviiimminneiccceene 6
Figure 2: Tanker escort of an F-16 fighter.........coovoioiiiiceee, 9
Figure 3: Tanker rendezvous with @ C-17 ..o 9
Figure 4: Tabu Tenure Behavior During RTS ... 16
Figure 5: TAP T00] FIOW Chartccoceiiiivinieiiiiniietnnereeeetss e 25
Figure 6: DV Alternative Generation Phase ..o 26
Figure 7: Initial Solution Generation Phase ..o 27
Figure 8: Tabu Search Phase..........ccceueieemriiiciiiiinseinsesesssssesss e sssssssssssssssssssns 28
Figure 9: Southeast Asia DEpPlOYMENL........ccoueuieiiiiiieieieieeeeseteete s 31
Figure 10: Initial RG flight times (Dep 1).....ccovimeimimieeeene 36
Figure 11: Best RG flight times (Dep 1)cceeereiieiniiiieeteceteensie e 36
Figure 12: Southeast Asia Deployment TS ReSultsc.coooveiiiiiniiniiee. 37
Figure 13: Tenure Comparisons for Deployment 1 ..o 38
Figure 14: TS Method Comparison for Deployment 1 ..o, 39
Figure 15: Middle East DeplOymeNntcoeieiiiririeeitinieenieteeteteseee et 40
Figure 16: Initial RG flight times (Dep 2)......cccoveurmrretrienreinrenreieete e 45
Figure 17: Best RG flight times (Dep 2) ...ccoevivuivimineiiniieeiceereeseeeeeetee et 45
Figure 18: Middle East Deployment TS Results.........coooveemimeiirnincnee 46
Figure 19: Tenure Comparisons for Deployment 2c.ooevoenmeinieincnneiniiineniiennns 47
Figure 20: TS Method Comparison for Deployment 2covvieoeieiiniiiinienieeneinne 49

v

List of Tables

Table 1: Example deployment schedule...................... Lereereeeeeteeeestesate st e bs et s b e b e s e b s anenae 7
Table 2: Receiver Groups for Southeast Asia Deploymentcooviiniiinnecninnennnncns 32
Table 3: Initial Mission Plan for Deployment 1.........cccocoviiiinimninnininenenneneennenn, 33
Table 4: Receiver Group Initial TOD and TOD for Deployment 1.........cooeeeivveennnnnenene. 34
Table 5: Best Mission Plan Evaluation for Deployment 1..........cccoeieininininenenncnnnen. 35
Table 6: Receiver Group Final TOD and TOA for Deployment 1cocvrierniennnnnene. 36
Table 7: Tabu Tenure COMPATISONSc.ccrereuereerrirrrisieiierieneeresseessessessaesessesssssssssassaess 38
Table 8: Receiver Groups for Middle East Deployment...........ccooveviimiiieiiiicninnnennnnns 40
Table 9: Initial Mission Plan for Deployment 2.........cccccoovimivienmniiniinneeeeeeeenene, 42
Table 10: Receiver Group Initial TOD and TOD for Deployment 2............cccceevirennenne. 43
Table 11: Best Mission Plan Evaluation for Deployment 2.........ccccooeiieniinnneienenrenene. 44
Table 12: Receiver Group Final TOD and TOA for Deployment 2cocvuevueneinnee. 45
Table 13: Tabu Tenure COMPATISONScccveerverrueisieiiiviisiisirerririreeseerseessessssessessssessesssnes 48
Table 14: Tool comparison for B-52 MiSSiONccceeieririienretieneieieeeeeeiee, 50
Table 15: Tool comparison for fighter MiSSIONScc.coeeuiiieiniiininitecereeee e 51

AFIT/GOR/ENS/00M-07

Abstract

In a joint effort between Air Mobility Command (AMC) and the Air Force
Instifute of Technology, we pfesent a Tanker Assignment Problem (TAP) Tool capable of
providing tanker mission plans for deployment scenarios. Due to the complex nature of
extracting a mission plan from the Combined Mating and Ranging Planning System
(CMARPS), AMC requires a tool to provide similar results in a simpler and less time
consuming manner. The tool developed allows AMC to input several receiver groups
consisting of various aircraft types and numbers. Each receiver group contains a point of
origin and destination, with the option of providing one waypoint along the path. In
addition, each group has a ready to load date (RLD) and required delivery date (RDD).
The user is also able to specify the locations of military tanker aircraft. The main goal of
this tool is to assign the tankers to the different refueling points of the receiver groups so
that all receiver groups arrive before their RDD. Secondary goals include the reuse of
tankers and limiting the total flight distance for all tanker aircraft. The TAP Tool uses
the heuristic technique tabu search to determine an assignment of tankers to receiver

groups during a deployment.

vi

Chapter 1. Background and Statement of the Problem

1.1 Background

The KC-135 Stratotanker and KC-10 Extender aircraft provide in-flight refueling
for numerous aircraft in the Air Force and Navy. These assets provide force
enhancement capabilities, most notably extended range and early arrival. For example,
with in-flight refueling, fighter aircraft can fly noﬁ-stop from the east coast of the United
States to Saudi Arabia in 15 hours rather than the 47 hours required by landing enroute to
refuel (Hostler 1987). By providing this extended rmge, the aircraft avoid the enroute
landings, thus adding security and safety. A single Department of Defense (DoD)
agency, Air Mobility Command (AMC), manages the allocation of these tanker aircraft to
refueling requests.

The KC-135 first entered the Air Force inventory in 1956 to extend the range of
Strategic Air Command’s B-52 strategic bémber fleet (Congressional Budget Office
1985). Today, almost every aircraft in the Air Force and Navy inventory can be refueled
while airborne. While the number of aircraft capable of aerial refueling has increased,
the number of tanker aircraft has decreased. The current fleet of KC-135 tankers consists
of 500 aircraft (300 fewer than 30 years ago), with an additional 50 KC-10 tanker aircraft
~ in the inventory. This fleet provides in-flight refueling to the majority of DoD’s military
fixed wing aircraft and many military aircraft from other nations. It allows combat |
aircraft to strike more targets deep in enemy territory, extends the time fighter aircraft can
protect friendly forces from attack by enemy aircraft, and supports the extension of the

United States’ military presence throughout the world.
1

Due to limited tanker aircraft compared to the number needed during an
operational deployment, not all refueling requests can be met simultaneously. This, in
turn, causes many receiver groups to arrive at their destinations later than scheduled
(receiver groups are formations of similar aircraft; i.e., 4 F-16s or 2 C-130s). Therefore,
the number of receiver groups that arrive tardy is largely determined by the allocation of
the tanker resources. The allocation of tanker resources an air refueling tanker schedule

that assigns tankers to receiver groups.

1.2 Problem Statement

The Air Force’s fleet of air refueling tanker aircraft provides essential support for
deployment of combat and combat support aircraft in crisis situations. The term
“deployment” refers to moving military forces to where the forces are needed so that they
are ready to respond to a crisis. Air refueling aircraft provide this support by offloading
fuel to receiver aircraft in flight. AMC receives analytical queries from various agencies
regarding different plahning scenarios. AMC runs computer simulations to answer these
questions. Those questions that involve deployment issues and tanker schedules require
AMC to make extensive runs with the Combined Mating and Ranging Planning System
(CMARPS).

Currently, the CMARPS software tool aids AMC in analyzing, planning, and
scheduling deployment of air refueling tankers to support immediate and anticipated
military operationé. This tool provides actual tanker/receiver aircraft schedules and flight
plans that take into account numerous system constraints. However, it can take up to two

weeks to run the number of scenarios necessary to allocate the tanker resources for one

deployment. Another drawback of CMARPS is that it is not interoperable with AMC’s
airlift simulation. Since tanker and airlift missions are interrelated and compete for
limited airbase resources, there needs to be some interaction between the two simulation

tools. This research focuses on improving AMC'’s analytical support response.

1.3 Scope

An overall tanker-planning tool vmay be viewed as a model of tanker deployment
and employment operations based on planning factors. Our proposed algorithm
addresses the deployment phase of the overall model, while deferring employment
planning to future research. Our project focuses on answering the following questions:

1. Given receiver group deployment schedules, receiver aircraft characteristics,

and system constraints/capacities, how many tankers will it take to meet
receiver deployment air refueling requirements? |

2. Given system constraints/capacities and a fixed number of tankers, how

quickly will receiver aircraft deploy?

This problem involves non-homogeneous vehicles, located at multiple locations,
assigned to receiver groups. In this manner, the problem is an assignment problem.
However, time-windows are introduced due to the limited number of tankers and the
composition of the receiver groups. The receiver groups consist of fighter and “heavy”
aircraft, the former requiring escort across open water by the tanker aircraft, while the
latter only need refueling from the tanker aircraft.

Factors that effect this problem include the tanker and receiver aircraft fuel

capacities and burn rates, deployment distances, number of aircraft to be supported and

time frames, geographic location of receiver origins, destinations, weather, requirements
for tankers to escort receivers, formation size, crew duty limitations, missed refueling,
base requirements, and aircraft servicing constraints. The latter three factors are not

considered in this research and are left for future research.

1.4 Contribution of Research

This effort provides AMC a quick running tanker-scheduling model. The
algorithm proposed in this research can serve as the starting point for a future tanker- |

scheduling model that is interoperable with an airlift model.

1.5 Report Overview

The remainder of this thesis is organized as following: Chapter 2 reviews the
literature pertaining to this research. Chapter 3 presents a proposed methodology for
conducting the research. Chapter 4 presents the results of the research. Finally, Chapter
5 discusses issues for further research and improvements that can be incbrporated for

future research on this topic.

Chapter 2. Literature Review

2.1 Tanker Scheduling Tools

2.1.1 Combined Mating And Ranging Planning System (CMARPS)

- CMARRPS is the current tool used by AMC to determine when, where, and how
much air refueling is required for mission aircraft. Originally introduced in 1982,
CMARPS noe functions with several other AMC tools providing optimized assignment
of tanker resources to meet the air refueling requirements. CMARPS considers single
cells of similar aircraft types. It determines the location and time for each cell’s refueling
points along the path. An effort is made to minimize the tanker aircraft and sorties flown
for each mission. Finally, CMARPS assigns specific tankers to the refueling points.
| The mission routing determines the fuel requirements for the receiver group.
CMARPS routes the mission considering the following criteria: avoid restricted airspace,
minimize threat exposure, deconflict routes in strike zone, and satisfy time over targets.
Once the fuel requirements are determined, CMARPS assigns tankers to meet the
requirements. The considerations during this phase include: minimize use of tanker
resources, minimize tanker fuel consumption, use air refuelable tankers, regenerate
tankers for tanker reuse, and meet the abort base requirements. Once the tanker
assignments are made, CMARPS simulates the aircraft mission using formulas for winds
and fuel consumptions to generate a final mission schedule and flight plan (LOGICON

1996).

2.1.2 Ouick Look Tool for Tanker Deployment

Russina, Ruthsatz, and Russ (1999) provide a prototype tool to evaluate tanker
allocation for the aircraft deployment mission. Their Quick Look Tool makes basic
assumptions regarding aircraft capabilities and interactions between receiver groups and
tankers. The Quick Look Tool functions as a relatively simple tool for modeling and
predicting air refueling tanker capabilities for supporting deployment of combat and
combat support aircraft. The AMC tanker-scheduling problem involves a wide scope of
system variables, constraints, and potential analysis areas. The example provided by
Russina, Ruthéatz, and Russ presents an in-depth explanation of the deployment issues
associated with tanker deployment.

Example Deployment

Figure 1 dipicts five airbases supporting two different deployment operations: (i)
OP1 represents the movement of a single or multiple receiver aircraft from initial position
Base 5 to desired final position Basel; and (ii) OP2 represents the movement of a single
or multiple receiver aircraft from initial position Base 2 to desired final position Base4.

Base 4

Base3 <
L
OP1
>
OoP2 Base 5
- !
Base 2

Figure 1: Example deployment flight paths

Both operations are subject to the schedule in Table 1.

Table 1: Example deployment schedule

Deployment | Receiver Receiver ALD RDD
Operation Origin Destination
OP1 Base 5 Base 1 1 3
OP2 Base 2 Base 4 2 4

As shown in the columns of the table, the aircraft involved in deployment OP1 have an
available to load date (ALD) from Base 5 on the first day of the designated scheduling
period and have a required delivery date (RDD) at Base 1 on the»third day. Additionally,
the aircraft involved in deployment OP2 are available to depart on the second day of the
scheduling period and need to arrive at their destination by the fourth day. The aircraft
involved in these missions may not have enough onboard fuel to cdmplete the desired
deployment, so they need support from the refueling tankers located at any one of the five
bases in Figure 1. |

Several different objectives exist for this problem. The primary objectives
include meeting scheduling goals, minimizing overall aircraft fuel consumption, and
minimizing the number of tankers used. Each objective is similarily constrained by the
interaction of receivers and tankers within the system, and the individual fuel
consumption characteristics of each aircraft.
Receiver and Tanker Interaction)

Several factors must be explicitly modeled when planning the deployment:

Distance = Rate x Time. Travel distance, time, and air speed rate are clearly key

factors in scheduling tankers to support the movement of receiver aircraft. For the

7

problem at hand, the only known value in this equation is the distance between origin and
destination airbases. Increasing the rate at which receivers travel improves solutions to
the scheduling problem, but increases fuel consumption rates, affecting fuel consumption
goals. Varying receiver travel rates enroute drastically increases the complexity of the
scheduling problem, which generally assumes constant travel rates. Thus, a well-defined
protocol for deciding travel rates and times must be determined before embarking 6n
analysis of scheduling options.

Geography. Another issue of importance is the geographical positioning of
airbases involved, with respect to both the distance between, and the relative positioning,
of particular bases. Distance between bases is a critical factor in the scheduling problem.
In addition to aircraft airspeed, altitude, gross weight, wind conditions, and refueling
speeds, the distance of flight drives a receiver’s total fuel consumption, and thus the
amount of fuel required to complete the desired mission.

Relative position of airbases is important. The relative positioning of airbases
affects the influence of wind on aircraft ground speeds and the distance of available
tankers from receiver routes of flight. This can force the alteration of receiver and tanker
flight paths due to inaccessible airspace. Thﬁs, developing appropriate assumptions to
model the geographical situation is critical to the accuracy of the scheduling tool.

Escort Requirements and Refueling Points. Safety regulations require the Air
Force escort fighter aircraft with refueling tankers when traveling over large bodies of
water. Heavier aircraft, such as cargo planes and bombers, do not require tanker escort.
Consider the example deployment problem and suppose that OP1 involves movement of
an F-16 fighter from origin Base 5 to destination Base 1. In addition, assume origin Base

8

5 is Travis Air Force Base and the destination Base 1 is Kunsan Air Base. If the F-16
fighter must traverse the Pacific Ocean to complete the OP1 operation, at least one
available tanker must rendezvous and accompany the fighter by the time it begins to fly

over open water (see Figure 2).

Receiver flight path: ‘_’ Base
Tanker flight path: *...° Base 3 D

ravis AFB

Kunsan Air

Base .B ase 2

Figure 2: Tanker escort of an F-16 fighter

On the other hand, if the aircraft is a C-17 cargo plane, the tanker only needs to

rendezvous with the receiver for as long as it takes to refuel (see Figure 3).

Receiver flight path: *_’ . Base
Tanker flight path: *...° -
L
ravis AFB
unsan Air
B
ase .B ase 2

Figure 3: Tanker rendezvous with a C-17

Thus, another important consideration relating to the interaction of receivers and
tankers is the development of a protocol governing the specification of desired refueling
points. Specification of refueling points are driven by several variables including escort
requirements, receiver fuel needs, and receiver fuel coﬁsumption rates.

Tanker Availability, Recycling, and Scheduling Precision. A problem closely
related to the geographical situation is tanker availability. There may be tankers located
at the origins or destinations of receiver aircraft or surrounding airbases close to the route
of flight. We would like to find the best way to utilize all available tankers. Thus, in
general we look for the closest available tankers to a desired refueling point or escort
path.

Another isAsue related to the availability and positioning of tanker aircraft is the
problem of tanker reéycling. Tanker recycling reuses tankers to support multiple
refueling points. Suppose two receiver groups require refueling to complete a mission,
but only one tanker is available to refuel both refueling points. In this case, the tanker
must support one of the two missions, then return to base for refueling before supporting
the second flight. In this simple situation the best schedule is trivial since we typically
support the more urgent mission first. However, more complex scheduling problems
increase the complexity of analyzing tanker recycling.

An obvious corollary of the recycling issue is the question of scheduling
precision. In our example deployment, the desired schedule is in terms of days. We may
wish to schedule in terms of hours, even minutes. Thﬁs, the question of tanker

availability and recycling becomes very important. It requires knowing accurately the

10

amount of time after being assigned to a receiver that a tanker requires to complete the
refueling operations, return to base, and become available for reassignment.

Crew Duty Limits. Another concern in scheduling deployment operations is
limitations on flight duration due to crew duty limits. For the safety of flight crews, Air
Force regulations limit the length of time a crew inay fly without a rest period. Thus,
similar to the issue of recycling tankers for repeated assignments, the availability of
crews for assignment must be considered.

Take-off Fuel. The amount of aerial refueling required to complete a particular
deployment mission can also be affected by the conditions of an aircraft’s origin base,
specifically ranway length and weather conditions. These parameters effect the take-off
weight of an aircraft in order to leave the ground. The primary method to decrease the
weight of an aircraft for take-off is to decrease the amount of fuel onboard.

Aircraft Fuel Consumption

Russina, Ruthsatz, and Russ (1999) identify and model the factors that determine
the fuel consumption rates of different aircraft.

True Air Speed. The true air speed of an aircraft directly influences the fuel
consumption rate since as an aircraft travels at faster speeds, it will burn fuel more
quickly.

Ground Speed. The amount of time necessary to traverse a particular distance is
not completely determined by the air speed of the aircraft. The effects of wind conditions
can increase or decrease the duration of a flight, causing changes in the fuel consumption.
Furthermore, if an aircraft’s airspeed adjusts to compensate for wind conditions, fuel

consumption is also affected.

11

Altitude. Another important factor concerning modeling fuel consumption rates is
the effect of flight altitude; i.e., fuel consumption rates are inversely proportional to the
altitude of flight.

Gross Weight. The fuel consumption rates of aircraft are also affected by the total
gross weight of an aircraft; i.e., fuel flow rates are directly proportional to the gross
weight.

Refueling Maneuvers. Finally, receiver aircraft often decrease altitude from a
more fuel efficient cruise altitude to a safe refueling altitude, and decrease speed to a safe
refueling speed. These refueling maneuvers also affect overall fuel consumption.

The paper explaining the Quick Look Tool provides detailed equations for the
above factors, along with examples for using them. The user interface involves a
Microsoft Excel Workbook with ten worksheets. All calculations made by the Quick
Look Tool are done in Excel macros written in Visual Basic for applications code. The
current Quick Look Tool accounts for tanker availability on a day-by-day basis, but does

not consider the tankers as located at separate bases.

2.2 Heuristic Approaches

The word “heuristic” is derived from the Greek word “heuriskein,” meaning “to
discover.” In practice, heuristics algorithms provide near-optimal solutions to difficult
problems in a timely and easy manner. According to Silver, Vidal, and Werra (1980)
there are several possible reasons a heuristic optimization approach is desired. The
problem formulation is such that an analytic (closed form) or iterative solution procedure

is unknown. An exact analytic or iterative solution procedure may be computationally

12

limiting to use. The heuristic method may be simpler for the decision maker to
understand. The method can be used as a learning tpol when the problem’s optimal
solution is known. In addition, since models are necessarily inaccurate representations of
the real conplex world problem, “optimal” solutions are only academic, and a heuristic
solution suffices. A fast near-optimal solution makes more sense than a time-conéuming
exact solution to an inexact problem (Zanakis 1981).

“Good” heuristics have several properties or features in common: (i) they are
simple which assists their understanding and acceptance; (ii) the ‘core storage
requirements are reasonable in size; (iii) the methods have speed; i.e., the computation
times do not grow at polynomial or exponential rates as the problem size increase; (iv)
the solutions obtained are accurate, and the degree of accuracy is determined by the
problem structure or user; (v) the methods are robust, which means as the size and
parameters of the problems change, the method still obtains good solutions, in reasonable

“times; (vi) multiple starting points that are not necessarily feasible are allowed; (vii)
multiple solutions must be available by selgcting proper input parameters, and this allows
the user to select the solutions with the most accuracy or satisfaction; (viii) a good
stopping criteria must be present, taking advantage of the search memory; (ix) the user
must be able to interact with the method (Zanakis 1981). One of the better heuristic

methods in use is tabu search (TS), first proposed by Glover (1986).

2.2.1 Tabu Search

TS is meant to cross boundaries of feasibility or local optimality, which were

usually viewed as barriers, to derive a method for intelligent problem solving (Glover and

13

Laguna 1997). The Committee on the Next Decade of Operations Research (CONDOR
1988) considered tabu search to be “extremely promising” for the future treatment of

practical applications.

Tabu search explores the solution space by systematically moving among
solutions. At each iteration, a move is made to some best solution in the neighborhood of
the current solution (not necessarily an improving solution). TS forbids, or makes tabu,
solutions with certain attributes in order to prevent cycling and to direct the search to
other regions of the solution space not yet explored. Short term and long term memory
functions prevent solutions obtaining these attributes from occurring, primarily through
measures of recency and frequency. The most common form of short term recency-based
memory is the tabu list. A tabu list consists of solution attributes modified in the latest
moves SO that these recent solutions are not revisited. The size of the list determines the
number of iterations a certain attribute is considered tabu and not allowed to influence the
next move.

Tabu search requires the following items (Ben-Daya and Al-Fawzan 1998):

Initial solution. There are many methods to generate this initial solution,

including random generation or greedy algorithms. This initial solution is not
required to be a feasible solution.

Neighborhood generating mechanism. Each solution is associated with a
neighborhood. This neighborhood contains all the solutions accessible within one
move from the current solution. Moves are unique manipulations of certain
attributes for a given solution.

Tabu list. A list containing attributes associated with recent moves; used to avoid
solution cycling.

Stopping criteria. TS contains no method to determine when the optimal solution
has been reached; thus, a method must be used to determine when the search
procedure terminates. Common procedures include using solution tolerance and
iteration counts.

14

Additional elements which prove useful to TS include:
Aspiration criterion. If a tabu move satisfies a specific aspiration criterion, the
move is considered among the other candidate solutions. A commonly used

aspiration criterion accepts a tabu move if it produces a solution with a better
objective function value than the best found so far.

Intensification scheme. This method intensifies the search in a promising region
of the space. This can be accomplished by locking in the choice of attributes
frequently contained in good solutions.

Diversification scheme. This method moves the solution to an area of the solution
space not explored previously.

There are many methods of choosing a good balance between intensification and
diversification schemes. These methods play an important role in tabu search. The
Reactive Tabu Search (RTS) algorithm determines the value of a prohibition parameter in
TS, so that a balance of exploration versus exploitation is obtained that is appropriate for
the local characteristics of the task (Battiti 1996). The prohibition parameter in TS,
usually referred to as the tabu tenure, determines the length of the tabu list which dictates
the number of iterations certain attributes of the so]ution are considered “tabu.”

The first main characteristic of RTS is the self-adjusting prohibition period. In
RTS, the prohibition 7, more commonly referred to as the tabu tenure, is determined
through feedback mechanisms as the search processes. Initially, T is equal to one; it
increases when there is a need to diversify; it decreases When this need vanishes. The

need for diversification is signaled by the repetition of previously visited solutions.

15

40) I i]
periocd T —o—
35 percent repetitions —+—
30

25

L——

&
%
0 3
DR

15

10 }

Y &
i i
Yial 5 4
ll" Sl

7 S
b ¥ et

HERY
fio
fao
* &
H

o
-

o

7

¥

_—

i
0 1000 2000 3000 4000 5000
£

Figure 4: Tabu Tenure Behavior During RTS

Figure 4 shows the behavior of T during the TS applied to a Quadratic Assignment
Problem (Battiti and Tecchiolli 1994). The value of T increases exponentially when
repetitions are encountered and decreases gradually when repetitions disappear.

The escape mechanism represents the second main characteristic of RTS. The
basic tabu method for prohibitions may not be sufficient to avoid long cycles. Even if
“limited cycles” are avoided, the search may still be in a limited region of the search
space. An additional escape mechanism making radical diversification steps is needed.
The escape phase activates when too many configurations repeat too often in the search
(Battiti and Tecchiolli 1994). A simple escape consists of random moves away from the
current solution (possibly with a bias toward moves that translate the trajectory away
from the current search region) (Battiti 1996).

The last main characteristic refers to fast algorithms and efficient memory storage

for using the search history, typically through the use of hashing techniques. The main
16

purpose of a hashing function is to enable a tabu search algorithm to rapidly detect
whenever it transitions to a previously visited solution. Woodruff and Zemel (1993)
present four different hashing functions, each using a series of random integers in order
to compute the hashing function, for use within a tabu search algorithm. According to
the authors, there are three purposes for these hashing functions 4. (i) The hashing
functions should be as easy as possible to update and compute. This requires the
structure of h to have characteristics éinﬂlar to the structure of the neighborhood sets. (ii)
The series of random integers should be in a range having reasonable storage
requirement; i.e., an integer requiring two or four bytes. (iii) A low probability of
collision is preferred. A collision occurs when two different solutions are encountered
with the same hash function value.

The CPU time for & is approximately constant with respect to the number of
iterations (Battiti 1996). Therefore, the overhead caused by the use of the history is
negligible for problems requiring a non-trivial number of operations to evaluate the

objective function value in the neighborhood.

2.3 Conclusion

Although the Quick Look Tool for Tanker Deployment designed by Russina,
Ruthsatz, and Russ (1999) provides a means to schedule the tanker aircraft to receiver
groups, it does not model multiple locations for these tankers. This research extends their
code, increasing the tanker’s capability to multiple origins. Due to the comple;xity of this
problem, a heuristic is required to get solutions in a reasonable length of time. We use a

modified tabu search (TS) method to solve this tanker assignment problem (TAP).

17

Chapter 3. Methodology

3.1 Solution Representation

In order to solve the TAP, we first determine how to represent the solution. There
must be a tanker aircraft assigned to each refueling point, so the solution consists of these
tankers assigned to the refueling points plus the time at which the tankers take-off from
their origin base. In addition, the tanker take-off times directly determine the times at
which the receiver groups must leave their base of origin. Thus, the receiver group take-
off times are also part of a solution.

We must first generate the list of solution attributes, which are modified to form
different solutions. Let RG1 be the first receiver group request. We first determine if
this receiver group requires refueling. If RG1 must be refueled during its deployment,
we calculate the location for the needed refueling(s). Let RG1, be a decision variable
(DV), representing the first refueling point for receiver group one. Next, we check each
of the bases with tanker aircraft to determine if there exists a tanker capable of satisfying
RG1’s fuel requirements. If RG1 consists of aircraft classified as “heavy,” the amount of
fuel that group requires is the amount of fuel needed to successfully continue the flight to
its destination or to the next refueling point. On the other hand, if RG1 contains aircraft
classified as “fighter,” then this group must have a tanker escort between refueling points.
Although “fighter” groups only require tanker escort over open water, we assume for this'
model that they require tanker escort between each refueling point and their final leg of
the mission. For this type of receiver group, a tanker must be capable of traveling to the

refueling point, fulfill the receiver group’s fuel requirements, escort the group to the next
18

refueling point, and finally return to its base of origin. For each tanker capable of
satisfying the requirements at RG1;, we generate a number of alternatives for the
decision variable RG1;. A separate alternative is generated for each tanker and for
discrete take-off times, in one-hour increments. We generate this list of DV alternate
values for all bases with tankers capable of satisfying the fuel requirements for RG1;.

Suppose that there exists no tanker with enough fuel to satisfy RG1,’s
requirements. In this case, we attempt to assign two tankers to this refueling point, with
each satisfying half of the off-load required of RG1. This process continues until the
appropriate numbers of tankers are assigned to RG1;. For each tanker assigned to RG1,,
anew DV is generated, with the same list of alternative choices for that DV. For
example, if two tankers are needed for RG1,;, then two DVs are generated, each having
the same set of alternate tankers, since both DVs have the same fuel off-load.

If RG1 requires more than one refueling point, we apply this same technique to
each of the these extra refueling points, with each of them representing another DV;
however, each tanker has only one take-off time, as opposed to the different distinct take-
off times for the tankers assigned to a first refueling point. This take-off time is a
continuous value that is based on the take-off time for the tanker assigned to the receiver
group’s first refueling point.

This method continues for each receiver group‘ until all refueling points and
numbers of tankers assigned to each are determined. At this point, the list of DV
alternatives represents all options for assigning tankers to receiver groups for the final
mission plan. Which of these alternatives to choose is now the focus of the search
engine.

19

3.2 Greedy Construction Heuristic

To expedite the search process, we begin with an initial feasible mission plan.
This plan is generated using a greedy construction heuristic. For each DV, representing a
refueling point, we assign the closest tanker that has not yet been assigned to another DV.
If the maximum number of tankers at the closest base is reached, we begin to repeat the
tanker assignments at this base. This is when a tanker conflict may occur, in which the
same tanker is scheduled for more than one refueling point at the same time. Increasing
the number of tankers at each base eliminates this conflict, but also increases the
computation time required during the search process. Therefore, we allow the initial
solution to be infeasible for some deployment problems. When we begin with an

infeasible solution, the first goal is to reach a feasible solution.

3.3 Solution Representation

A given solution to this deployment is represented by a mission plan. Each
decision variable’s (DV) value consists of a specific tanker assigned to a refueling point
and the time that tanker is scheduled to depart its base of origin. The values of the DVs
are used to calculate the time of departure (TOD) from the origin base and time of arrival
(TOA) to the destination base for each receiver group. In order to determine the best DV

values for the deployment, we must have a means of evaluating a mission plan.

3.4 Mission Evaluation
There are many specified goals for this problem. Our first goal is to have the

receiver groups arrive at their destinations on time. This is represented by a hard

constraint, resulting in an infeasible mission plan if any receiver groups are scheduled to

20

arrive past their RDD. The second goal is to minimize the total distance traveled by the
tanker aircraft. Another goal is to use the fewest tankers possible. We evaluate a mission
plan using a single value incorporating each goal:

Mission Evaluation = Distance Penalty — Reuse Bonus — Early Bonus + (Sync Penalty +

Conflict Penalty + Tardiness Penalty + Early Penalty + Negative TOD Penalty) + Tanker Index

The TS search engine primarily uses the following three values during the search
process.

Distance Penalty: For each decision variable, the distance penalty is the sum of
the distances traveled by all tankers in the current mission. The solutions with smaller
distance penalties are more attractive.

Reuse Bonus: Each time a tanker is reused in a mission, this value is increased.

Early Bonus: Although we aré most concerned with having each receiver group
arrive by its RDD, it is valuable to have them arrive earlier. Thus, this value represents
the number of hours a receiver group arrives at its destination before its RDD.

The next set of values encourages feasibility throughout the search process.

Sync Penalty: If areceiver group requires moré than one tanker at a refueling
point along its path, these tankers must arrive at that location at the same time. A heavy
penalty is applied when the tankers assi gnéd to this multi-tanker refueling point are not
scheduled to arrive at the same time.

Early Penalty: The deployment is scheduled to begin at time zero. Thus, a heavy
penalty is applied when a receiver group’s TOD is before time zero.

Negative TOD Penalty: In the case when a receiver groups TOD is before zero,

which might happen when starting with an infeasible solution, this value directs the

21

search process into the feasible region. This term applys large negative values to the
missions that correct this problem, thus making those missions attractive choices for the
next mission plan.

Conflict Penalty: In order to ensure that a tanker does not refuel two receiver
groups at the same time, we impose a conflict penalty. Each tanker is given a 3-hour
turnaround period between missions. If any of the tankers in fhe solution break this 3-
hour separation between assignments, a conflict occurs. When this happens, a large
conflict penalty is added to the objective function.

When we use the greedy construction heuristic, the initial solution is generally
feasible with no tanker conflicts. However, due to the number of tanker aircraft available
at a base, the greedy construction heuristic can generate an initial solution with tanker
conflicts. When this occurs, the search method must bring the solution back into the
feasible region. To accomplish this, the large negative conflict penalty in the objeqtive
function encourages TS to generate moves to decrease the number of conflicts.

Tardiness Penalty: In order to ensure that each receiver group arrives before its
RDD, a large penalty is applied to the objective function when a receiver group’s TOD is
tardy. |

Tanker Index: Tankers are indexed at each base. Indexing encourages using the
lower indexed tankers. We use this vaiue for cosmetic reason only, since all tankers are

of the same type.

22

3.5 Tabu Implementatiqn

The tabu search employed for the TAP explores the solution space by swapping
tankers assigned to a refueling point. A move is defined as removing an existing tanker
assigned to a refueling point and replacing it with another tanker within range to satisfy
the needs of the receiver group at that refueling point.

To illustrate, consider the first refueling point in the mission. The current tanker
assigned to this refueling point is removed. Note that the decision variable representing
this tanker assignment also has a take-off time corresponding to the tankef base and
number. A decision variable representing a different tanker assigned to this refueling
point is included in the solution. This new (temporary) mission plan, or neighbor, is
evaluated. This evaluation is made for each tanker/take-off time within range of the first
refueling point. This process is repeated for each refueling point in the deployment
mission. At the end of this process, there is a mission evaluation for each decision
variable altemative, representing all possible changes to the mission plan making only
one move. This represents the candidate list for the current iteration.

TS now chooses the best mission evaluation from the candidate list. Once this

move is made, TS puts this refueling point on the tabu list. TS will not change the tanker

assigned to a refueling point on this list unless its mission evaluation is better than any
mission thus far in the search process. This is known as the aspiration criterion. A -
refueling point will remain on the tabu list for a set number of iterations. This number is
referred to as the tabu tenure. Changing this tenure affects the béhavior of the search

process. TS relies on this tenure to regulate its short-term memory characteristic.

23

Humans tend to have a short-term memory capacity of 7, and empirical TS results find

this a reasonable value to start with as a tenure length (Glover 1990).

3.5.1 Tabu Search Methods

The TAP tool allows the user to modify three parameters regarding the tabu
search process. In addition to changing the tabu tenure, the user may select to change
two other parameters. The first parameter determines the candidate list size during the
search process. Due to the complexity of TAP, computation time greatly increases as the
number of DVs increase. Therefore, the skip number directs TS to only consider portions
of the candidate list. The skip number equates to the number of portions of the candidate
list considered. With a skip number of one, there is no reduction in the candidate list
size. TS considers every DV alternative at each iteration. If the skip number is two, TS
considers every other DV alternative. For example, if the DV alternatives were
numbered, then the first candidate list consists of the mission evaluations for the odd
numbered alternatives. For the next iteration, only the even numbered alternatives are
evaluated. The candidate list is split in a similar manner for skip numbers greater than
two.

The second parameter effects the size of the tabu restriction. If the user selects
the large restriction, TS will put the refueling point DV on the tabu list. Thus, TS
restricts the changing of this DV unless it satisﬁes the aspiration criterion. On the other
hand, selecting the small restriction puts the refueling point DV and the base assigned to
that DV on the tabu list. In this case, TS may assign a tanker from a different base to this

DV, but assigning a tanker from the base already assigned to the DV is restricted.

24

By changing these two parameters we form different TS methods. If we only
allow the skip number to be one or two, representing the full and half size candidate list
respectively, we form four specific TS methods. We call these four methods Full/Large,

Full/Small, Half/Large, and Half/Small.

3.6 TAP Tool Implementation

Once AMC inputs the datz; for a deployment scenario, the TAP tool uses three
phases to arrive at an output consisting of the initial, final, and best missidn plans (see
Figure 5). The three phases consist of DV alternative generation, initial solution
generation, and tabu search. Detailed flow charts for each of these three phases are

depicted in Figures 6-8, respectively.

Figure 5: TAP Tool Flow Chart

25

Create one DV
alternative with a
variable take-off

" time.

Consider next receiver
group request.

v

Calculate # of refueling
points required, their
locations, and offload

required at those points.

v

Consider next

refueling point.

Is there a
tanker base
within range
with enough
offload?

within range.

v

Consider next
>

Create another DV for
this RP. Split the offload
evenly between the DVs.

Consider next base €

tanker.

Is this the first
RP for this
RG?

Create DV alternative
for each take-off time
increment

Is there another
tanker at this
base?

Is there another
base within
range?

Does this RG
have another
RP?

Is another

receiver
request?

Initial Solution
Generation Phase

Figure 6: DV Alternative Generation Phase

26

DV Alternative

Generation Phase

Greedy
Method?

Consider next

DV.

Consider next
DV.

v

l

Select closest tanker
that has not been
assigned to another
DV.

Select 1st DV
alternative.

Select closest tanker
allowing 10 hour gap
between take-off times.

Wasa
tanker
selected?

Was a
tanker
selected?

Select same tanker
and take-off time as
previous DV.

Are there

more DVs?

Are there
more
DVs?

Is this DV
representing a
RG’s 1st RP?

Calculate take-off
time based on RG’s
1st RP time.

Y

Tabu Search |
Phase

Figure 7: Initial Solution Generation Phase

27

Initial Solution

Generation Phase

Consider next
candidate in the list.

;

Determine if current
solution is feasible.

v

Count the tanker
reuse in current
solution.

Change DV in current
solution with next
alternative determined
by skip number.

Calculate mission
value considering:
*RG TOA and TOD
*Tanker TOD

*Tanker conflicts
*Feasibility change
*Tanker flight distances

A

Place mission
evaluation in
candidate list.

More DV
alternatives?

Revert back to
current solution.

Is this
candidate
tabu?

Isthisa
better
candidate?

Is this a new
best solution?

Replace best
candidate solution.

Are there
more
candidates in
the list?

Replace current
solution with best
candidate.

Is this a new
best solution?

A

Replace best overall
solution..

v

Update tabu list.

More TS
iterations?

Output Data to
Worksheets

Figure 8: Tabu Search Phase

28

3.7 Measurement of Results

We measure our results through a comparison with the solution generated by the
current tanker-planning tool, CMARPS. AMC has set a conservative goal to achieve
results within 20% of CMARPS’ outputs; however, the goal of this research is to have
computation times much less than CMARPS’ and produce solutions that have the same
quality as CMARPS’ solutions. In the next chapter, we apply TS to two sample

deployments. We also compare the CMARPS to the TAP Tool for a simple mission plan.

29

Chapter 4. Results and Conclusions

An Excel-based tool was developed to input a number of receiver group requests
and output a mission plan consisting of tanker assignments to refueling points. Two
sample deployments were provided by AMC for testing this new tool. In addition, AMC
provided bed-down locations of KC-135s around the globe.

Since this tool considers all tankers within range of refueling points, it is
necessary to decrease the actual numbers and locaﬁéns of tankers in order to increase the
computational efficiency of the tool. For example, there are several Air National Guard
and Air Force Reserve bases in the U.S. that contain tanker aircraft. Many of these bases
are within range of the early refueling points of a depioyment. This large number of
available tankers greatly increases the number of decision variable alternatives during the
search process. Therefore, we first run the program with tankers located at active
airbases. If the tool returns a solution with no tanker assigned to a refueling location, we
place tankers at a base originally in the list of bed-down locations so that there is a tanker
capable of satisfying the receiver group’s requirements at that refueling point. Due to the
time required to run this tool, we make the first run using only one iteration of TS. This
provides us with a list of all bases with tankers within range of the refueling points. Once
there is a tanker within range of each refueling point, we make a full TS run. The number
of TS iterations performed in the full run is determined by the complexity of the

deployment and the user’s time constraint.

30

4.1 Southeast Asia Deployment

The first deployment we test involves receiver groups departing the continental
U.S. and arriving in Southeast Asia. Table 2 provides a list of the 11 receiver groups

shown in Figure 9.

Figure 9: Southeast Asia Deployment

The tanker bases activated for this deployment include McConnell, Mountain
Home, Grand Forks, Fairchild, Kadenz;, and Eielson, with 15 KC-135 tankers located at
each base. Tankers located at these bases are capable of satisfying all the receiver
groups’ fuel requirements during the deployment. None of the receiver groups have

waypoints for this deployment. A waypoint is a location the receiver group must first

31

reach before heading towards their destination base. Our code allows the user to input

one waypoint for each receiver group.

Table 2: Receiver Groups for Southeast Asia Deployment

RG # Aircraft # of Origin Destination | ALD | RDD
Type Aircraft
1 F117 2 Holloman Osan 1 5
2 “ F15 6 Mountain Home | Osan 1 5
3 F15 6 Elmendorf Osan 1 5
4 F16 6 Eielson Osan 1 5
5 A/OA10 6 Eielson Osan 1 5
6 B1 1 Mountain Home | Andersen 1 5
7 B1 1 Ellsworth Andersen 1 5
8 B1 1 Dyess Andersen 1 5
9 B52 1 Barksdale Andersen 1 5
10 B52 1 ‘Minot Andersen 1 5
11 F117 2 Holloman Osan 1 5

We apply the Half/Small TS method with a tabu tenure of 7. Table 3 shows the
resulting initial mission plan generated by the greedy method. Table 4 displays the TOD |
and TOA for each receiver group. The TOD and TOA values for tankers and receiver

groups are represented in hours after the deployment begins.

32

Table 3: Initial Mission Plan for Deployment 1

RG # | Refueling Point # | Tanker Base Tanker # | Tanker TOD (hours)
1 1 FAIRCHILD AFB | 1 6.0
1 2 EIELSON AFB 1 7.7
1 3 EIELSON AFB 2 9.4
1 4 KADENA AB 1 10.4
1 5 KADENA AB 2 15.5
2 1 EIELSON AFB 3 6.0
2 1 EIELSON AFB 4 6.0
2 2 KADENA AB 3 5.7
2 2 KADENA AB 4 5.7
2 2 KADENA AB 5 5.7
2 3 — KADENA AB 6 13.3
3 1 KADENA AB 7 1.0
3 1 KADENA AB 8 1.0
3 1 KADENA AB 9 1.0
3 2 KADENA AB 10 8.6

[4 1 EIELSON AFB 5 1.0
4 1 EIELSON AFB 6

DENA

5 1 .
5 2 KADENA AB 10.5
6 1 KADENA AB 11.0
7 1 KADENA AB 21.0
8 1 KADENA AB 31.0
9 1 EIELSON AFB 11.0
9 1 EIELSON AFB 11.0
10 1 EIELSON AFB
11 1 FAIRCHILD AFB
11 2 EIELSON AFB

3

This initial mission plan consists of 28 tankers. Each receiver group arrives at its
destination before their RDD. However, this mission plan is not feasible since there is a

conflict between the two highlighted tankers. Tankers 11 and 12 out of Kadena are both

33

scheduled to depart before they have time to accomplish their first assignments and take a

3-hour maintenance period.

Table 4: Receiver Group Initial TOD and TOD for Deployment 1

Receiver Group # TOD (hours) | TOA (hours)
1 4.5 17.3
2 4.1 15.2
3 3.6 11.0
4 1.1 8.5
5 1.1 12.3
6 4.1 16.2
7 16.2 29.5
8 25.8 40.2
9 4.6 19.6
10 1 0.6 13.8
11 4.5 17.3

The first course of action for the search process is to change the DVs values to
make the mission plan feasible. This is accomplished during two iterations of TS. After
100 iterations, we arrive at the best mission plan found which is presented in Table 5 and

Table 6. This plan consists of 13 tankers.

34

Table 5: Best Mission Plan Evaluation for Deployment 1

RG # | Refueling Point# | Tanker Base Tanker # | Tanker TOD (hours)
1 1 ‘ FAIRCHILD AFB 1 6.0
1 2 EIELSON AFB 1 7.7
1 3 EIELSON AFB 2 9.4
1 4 KADENA AB 1 10.4
1 5 KADENA AB 11 15.5
2 1 EIELSON AFB 5 51.0
2 1 EIELSON AFB 4 51.0
2 2 KADENA AB 3 50.7
2 2 KADENA AB 4 50.7
2 2 KADENA AB 13 50.7
2 3 KADENA AB 11 58.3
3 1 KADENA AB 3 1.0
3 1 KADENA AB 8 1.0
3 1 KADENA AB 13 1.0
3 2 KADENA AB 10 8.6
4 1 EIELSON AFB 5 1.0
4 1 EIELSON AFB 4 1.0
4 2 KADENA AB 11 3.0
5 1 KADENA AB 3 31.0
5 1 KADENA AB 13 31.0
5 2 KADENA AB 11 40.5
6 1 KADENA AB 11 26.0
7 1 KADENA AB 3 16.0
8 1 KADENA AB 13 66.0
9 1 EIELSON AFB 5 36.0
9 1 EIELSON AFB 4 36.0
10 1 EIELSON AFB 4 16.0
11 1 FAIRCHILD AFB 1 61.0
11 2 EIELSON AFB 10 62.7
11 3 EIELSON AFB 4 64.4
11 4 KADENA AB 11 65.4
11 5 KADENA AB 3 70.5

35

Table 6: Receiver Group Final TOD and TOA for Deployment 1

Receiver Group # TOD (hours) | TOA (hours)
1 4.5 17.3
2 49.1 60.2
3 3.6 11.0
4 1.1 8.5
5 31.1 42.3
6 19.1 31.2
7 11.2 24.5
8 60.8 75.2
9 29.6 44.6
10 10.6 23.8
11 59.5 72.3

The computation time for this run is approximately 20 minutes'. For the initial
solution, the TAP Tool attempts to have each receiver group arrive as early as possible
(see Figure 10). In order obtain a feasible solution and accomidate tanker reuse, TS
distributes the receiver group flight times throughout the allowable deployment period

(see Figure 11).

n] =3 1]
(s | | i
g, —m g [enersaensoon |
g c— g 1 [amazammaa
o7 — o 7] '
2 | 2 [sascnansa
B == 8 s
T 1 o e
3| D 3|l =2
[san |] =
1] = 1
] 20 40 60 80 160 o 20 40 60 80 100
Hours After Deployment Begins Hours After Deployment Begins
Figure 10: Initial RG flight times (Dep 1) Figui‘e 11: Best RG flight times (Dep 1)

We see in Figure 12 the mission evaluations during the 100 iterations of TS using

the Half/Small method with tenure of 7.

! Intel Pentium II 350 Mhz, 64 Meg RAM
36

110000

105000 V\/\/\

P 3

Mission Evaluation

TS Iteration

Figure 12: Southeast Asia Deployment TS Results

4.1.1 Tabu Tenure Comparison for Southeast Deployment

To examine the effects of the tabu tenure on this deployment, we perform six
separate runs using odd tabu tenures 1 through 11.

Figure 13 shows the mission evaluations for these runs during the search process.
For tenures 1 and 3, the search process is trapped in a local optimal region of the solution
space around iteration 30. With a tenure of 5, the latter local optimal region is surpassed,
but the search process eventually is trapped in another one around iteration 70. The final
three tenure values (7,9,and 11) continue to navigate the solution space throughout the
100 iterations without being stuck within a local optimal region. The tenure values did

not impact the computational times for TS.

37

Tenure 3 —e—Tenure 5 -----: Tenure 7 —e—Tenure 9 —+—Tenure 11

—»—=Tenure 1

110000

105000

100000

95000

85000

Mission Evaluation

80000

75000

TS lteration

Figure 13: Tenure Comparisons for Deployment 1

Table 7 shows the statistics for the best missions resulting from the various tenure

values. Tenures 7, 9, and 11 take strong advantage of tanker reuse in the deployment.

Table 7: Tabu Tenure Comparisons

Tabu Tenure | # of Tankers Used | Total Tanker Distance Latest Receiver Group TOA
(hours)
1 21 120461 78.5
3 21 120461 75.2
5 16 120461 70.1
7 13 120461 82.3
9 12 120461 73.5
11 13 120461 A 82.3

38

4.1.2 Tabu Search Method Comparison for Southeast Deployment

We next compare the four search methods, again applying 100 iterations for each
TS method. We use a tabu tenure of length 7 to maintain consistency. Figure 14 shows

the mission evaluation during the 100 iterations.

[——Fuli/Large and Ful¥Smalt ----- Half/Large and Halt/Small]

110000

105000 o
\A\m

100000 0

95000

20000

Mission Evaluation

85000

80000

75000 +rr

TS Iteration

Figure 14: TS Method Comparison for Deployment 1

For this deployment, the size of the tabu restriction (large or small) had no effect
on the search results. On the other hand, the candidate list size made a large difference.
The resulting best mission evaluations are relatively close, but the computation time
changed dramatically. Evaluating the full candidate list at each iteration resulted in 100
iterations of TS computed in 40 minutes. However, TS requires only 20 minutes to
compute the 100 iterations when only half the candidate list is considered at each

iteration.

39

‘ 4.2 Middle East Deployment

The second deployment we test involves receiver groups departing the continental

U.S. and arriving in the Middle East region. Table 8 provides a list of the 9 receiver

groups for the deployment shown in Figure 15.

\/

Figure 15: Middle East Deployment

Table 8: Receiver Groups for Middle East Deployment

RG # Aircraft #of Origin Destination | ALD | RDD
Type Aircraft
1 F117 2 Holloman Dhahran 1 5
2 A/OA10 6 Eielson Dhahran 1 5
3 F15 6 Langley Dhahran 1 5
4 F16 6 Shaw King Khalid 1 5
5 F15 6 Langley King Khalid 1 5
6 B1 1 Mountain Home | Diego Garcia 1 5
7 B1 1 Ellsworth Diego Garcia 1 5
8 B52 1 Dyess Diego Garcia 1 5
9 B52 1 Minot Diego Garcia 1 5

40

The tanker bases activated for this deployment include Mildenhall, Bangor,
Seymour-Johnson, and Eielson with 30 KC-135 tankers located at Mildenhall and 10 KC-
135 tankers located at the other three bases. Currently, Mildenhall is the only airbase in
the European region for the tanker bed-down. Because of this, many of the refueling
points for this deployment must be satisfied by tankers located at Mildenhall. That is
why we must station more KC-135s at that location. The user may choose to station
some tankers at other bases in the region to share the workload with the ones stationed at
Mildenhall. None of the receiver groups have waypoints for this deployment. Table 9
shows the resulting initial mission plan generated by the greedy method. Table 10

displays the TOD and TOA for each receiver group.

41

Table 9: Initial Mission Plan for Deployment 2

RG # | Refueling Point # | Tanker Base Tanker # | Tanker TOD (hours)
1 1 BANGOR IAP 1 1.0
1 2 BANGOR IAP 2 3.2
1 3 MILDENHALL 1 5.6
1 4 MILDENHALL 2 9.5
1 5 MILDENHALL 3 10.6
1 6 MILDENHALL 4 10.8

P

2 1 MILDENHALL 5 1.0
2 1 MILDENHALL 6 1.0
2 1 MILDENHALL 7 1.0
2 1 MILDENHALL 8 1.0
2 1 MILDENHALL 9 1.0
2 1 MILDENHALL 10 1.0
2 2 MILDENHALL 11 8.0
2 2 MILDENHALL 12 8.0
2 2 MILDENHALL 13 8.0
2 2 MILDENHALL 14 8.0
2 2 MILDENHALL 15 8.0
2 2 MILDENHALL 16 8.0
2 3 MILDENHALL 17 12.4
3 1 MILDENHALL 18 1.0
3 1 MILDENHALL 19 1.0

f 3 2 MILDENHALL 20 8.8
3 2 MILDENHALL 21 8.8
3 3 MILDENHALL 22 9.2
3 3 MILDENHALL 23 9.2
3 3 MILDENHALL 24 9.2
4 1 BANGOR IAP 3 1.0
4 2 MILDENHALL 25 2.6
4 3 MILDENHALL 26 7.0
4 4 MILDENHALL 27 7.4

6 1 EIELSON AFB 1

7 1 BANGOR IAP 4 11.0
7 1 BANGOR AP 5 11.0
8 1 BANGOR IAP 6 11.0
8 1 BANGOR IAP 7 11.0
9 1 BANGOR IAP 8 11.0

42

Table 10: Receiver Group Initial TOD and TOD for Deployment 2

Receiver Group # TOD (hours) | TOA (hours)
1 1.5 17.2
2 1.5 19.4
3 2.1 15.5
4 0.0 14.1
5 2.2 15.8
6 1.3 21.3
7 3.6 23.6
8 2.1 23.2
9 0.4 19.8

This initial mission plan uses 39 tankers. Each receiver group arrives at its
destination before their RDD. However, this mission plan is not feasible since there is a
conflict between tankers highlighted. Several of the tankers out of Mildenhall have
schedules that overlap. Again, the search process is designed to first change the DVs’
values to make the mission plan feasible. This is accomplished using seven iterations of
TS. Using. the Half/Small TS method with tenure of 7, the best mission plan we find after
100 iterations is shown in Table 10 and Table 11. This mission plan uses 26 tankers

instead of the 39 assigned in the initial plan.

43

Table 11: Best Mission Plan Evaluation for Deployment 2

RG # | Refueling Point # | Tanker Base Tanker # | Tanker TOD (hours)

1 1 BANGOR IAP 1 1.0

1 2 BANGOR IAP 2 3.2

1 3 MILDENHALL 1 5.6

| 1 4 MILDENHALL 2 9.5
| 1 5 MILDENHALL 3 10.6
| 1 6 MILDENHALL 4 10.8
2 1 MILDENHALL 6 1.0

2 1 MILDENHALL 20 1.0

2 1 MILDENHALL 26 1.0

2 1 MILDENHALL 24 1.0

2 1 MILDENHALL 22 1.0

2 1 MILDENHALL 10 1.0

2 2 MILDENHALL 11 8.0

2 2 MILDENHALL 12 8.0

2 2 MILDENHALL 13 8.0

2 2 MILDENHALL 14 8.0

2 2 MILDENHALL 15 8.0

2 2 MILDENHALL 16 8.0
2 3 MILDENHALL 17 12.4

3 1 MILDENHALL 26 41.0

3 1 MILDENHALL 6 41.0

3 2 MILDENHALL 20 48.8

3 2 MILDENHALL 10 48.8

3 3 MILDENHALL 22 49.2

3 3 MILDENHALL 23 49.2

‘ F 3 3 MILDENHALL 24 49.2
| 4 1 BANGOR IAP 1 56.0
‘ 4 2 MILDENHALL 25 57.6
| 4 3 MILDENHALL 26 62.0
4 4 MILDENHALL 20 62.4

4 4 MILDENHALL 6 62.4

4 4 MILDENHALL 10 62.4

5 1 MILDENHALL 22 21.0

5 1 MILDENHALL 24 21.0

5 2 MILDENHALL 26 28.0

5 2 MILDENHALL 6 28.0

5 3 MILDENHALL 28 29.1

| I 5 3 MILDENHALL 8 29.1
| I 5 3 MILDENHALL 4 . 29.1
I 5 3 MILDENHALL 20 29.1

| | 6 1 EIELSON AFB 1 11.0
! 7 1 BANGOR IAP 1 36.0
| 7 1 BANGOR IAP 5 36.0
| 8 1 BANGOR IAP 1 16.0
8 1 BANGOR IAP 7 16.0

9 1 BANGOR IAP 1 26.0

44

Table 12: Receiver Group Final TOD and TOA for Deployment 2

Receiver Group # TOD (hours) | TOA (hours)
1 1.5 17.2
2 1.5 19.4
3 42.1 55.5
4 55.0 69.1
5 22.2 35.8
6 1.3 21.3
7 28.6 48.6
8 7.1 28.2
9 15.4 34.8

The greedy construction method selects early tanker take-off times putting the

receiver groups flight times in the beginning of the deployment period (see Figure 16).

The initial solution for the Middle East deployment has 10 tanker conflicts. TS

encourages a feasible solution and tanker reuse by distributing the receiver group flight

times across the deployment period (see Figure 17)

)€ 9
8L 8
g, g
g 6 96
s| L] § 5
P 2.
3| 3 3
| 3 2
| £ 1
° 20 20 60 80 100 0 20 40 60 80
Hours After Dep lo yment Begins Hours After Deplo ynent Begins

_ Figure 16: Initial RG flight times (Dep 2)

Figure 17: Best RG flight times (Dep 2)

The computation time for this run is approximately 1 hour and 30 minutes.

Figure 18 displays the mission evaluations during the 100 iterations.

2 Intel Pentium II 350 Mhz, 64 Meg RAM

45

N
A
N

180000
MM

i ¥ W

170000

Mission Evaluation

TS lteration

Figure 18: Middle East Deployment TS Results

4.2.1 Tabu Tenure Comparison for Middle East Deployment

We again compare the results based on 100 TS iterations using different tabu
tenure lengths. We test with the odd tenure lengths from 1 to 11. Figure 19 shows the

mission evaluations during these six runs.

46

|—~—Tenure 1 ——Tenure 3 —=—Tenure 5 —Tenure 7 ----- Tenure 9 ——Tenure 11 J

205000

200000

195000

130000

185000

180000

Mission Evaluation

175000

170000

165000 +rrrrrr T T T T T T T T T T T T T e T

TS lteration

Figure 19: Tenure Comparisons for Deployment 2

The TS with tenure 1 quickly reaches a local optimum region and is trapped for
the remainder of the iterations. Tenure 3 escapes this local optimum region, but is
trapped within another region around iteration 40. Tenures 5, 7, and 11 continue to find
better solutions, but appear traﬁped in a local optimum region during the last set of
iterations. Tenure 9 has clearly escaped this local optimum region, and has found the
overall best mission evaluation for the different TS tenure lengths. Table 13 shows that
although the total tanker distance and latest receiver group TOA are worse with tenure 9,

there are 2 fewer tankers used in the mission than with tenures 5, 7, and 11. Since tanker

47

<

reuse is weighted more than tanker distance and receiver group TOA in the mission

evaluation, this mission is still considered the better one.

Table 13: Tabu Tenure Comparisons

Tabu Tenure | Number of Tankers Used | Total Tanker Distance | Latest Receiver Group TOA
(hours)
1 31 215204 69.1
3 29 215204 69.1
5 26 215204 69.1
7 26 215204 69.1
9 24 216164 79.1
11 26 215204 69.1

4.2.2 Tabu Search Method Comparison for Middle East Deployment

We next compare the four search methods, again applying 100 iterations for each

TS method. We apply a tenure of length 7 to maintain consistency. Figure 20 shows the

mission evaluation during the search process. For this comparison, the TS runs for

Full/Large and Full/Small use 50 iterations, while the other two use 100 iterations. The

computation time required for each of these runs is 1 hour 26 minutes.

48

ission Evaluation

— Full/Large and Full/Small - Half/Large — Half/Small

205000

200000

195000
\\M

185000

180000 W :
W AA

3

TS Rteration

Figure 20: TS Method Comparison for Deployment 2

Although the size of the tabu restriction has no effect when TS considers the full

candidate list, there is a difference when TS only considers half the candidate list for each

iteration. Using a larger restriction for the half TS method found a better solution during

the 100 iterations. This could be due to the fact that a larger restriction puts a larger

number of DV alternatives on the tabu list. Essentially, this might have a similar effect to

using a larger tabu tenure, since a larger tenure length also results in a larger amount of

DV alternatives on the tabu list. Because more DV alternatives are considered tabu, the

search process is forced to escape local regions. Providing TS with more DV alternatives

to choose at each iteration allows the search process to explore local regions more

49

thoroughly, though possibly increasing the number of iterations needed to make critical
moves to reach better solutions.

For this deployment, the TS methods considering half the candidate list at each
iteration both reach better mission evaluations in the same amount of computation time.
Furthermore, TS method Half/Large reaches a better solution in the first 50 iterations.
‘This suggests that for similar deployments, runs should be made with this tool using a
skip number of 2 and a large tabu restriction. Not only will the computation time be cut
in half, but depending on the deployment scenario, this may be the TS method which

produces the best mission evaluation.

4.3 CMARPS vs. TAP Tool

In order to compare the effort required by CMARPS to that of the TAP tool, we
use two simple mission plans. The first mission plan involves a single B-52 receiver
group scheduled to fly from the U.S. to Souda. We look at both one-way and round-trip
flights. AMC is interested in the comparison of computation time and total offload

required by the B-52 for this mission. Table 14 displays the comparison of the two tools.

Table 14: Tool comparison for B-52 mission

One-way (KBAD—LGSA) Round-trip (KBAD—-LGSA—KBAD)
Set-up Run Time | Offload Set-up Run Time | Offload
Time (min) | (min) (K 1bs.) Time (min) | (min) (K Ibs.)
CMARPS 20 5 0 20 5 250
TAP Tool <1 0.05 19.2 <1 0.06 240

The difference in offload required for the one-way flight is probably due to the

climb-fuel required by the B-52. The B-52 can fly 5663 miles on a full tank of fuel. The

50

total flight distance for this mission is 5428 miles. However, after the B-52uses 19.2 K
Ibs. of fuel to climb to altitude, it can only travel 5213 miles with the remaining fuel on
board. Depending on the distance the B-52 travels during its climb to altitude, it may
have less than 5213 miles remaining in the flight. This is obviously the case in the
CMARPS run, since there was no requirement for a refueling point. In our tool, we
assume that every aircraft type flies 100 miles during the climb. In this case, the B-52
has 5328 miles remaining when it reaches altitude, which is greater than the number of
miles the B-52 can fly with its remaining fuel. The actual number of miles traveled
during an aircraft climb to altitude is dependent on the winds and the target altitude.
The second small mission for comparison involves three fighter receiver groups.
The groups consist of 6 F-15s, 6 F-16s, and 2 A-10s. Their destination base is Lajes,
Greece, while their origin bases are St. Louis, Deluth, and Hurlburt Field respectively.
Again, we are interested in the time to run this mission and the total offload required for

the receiver groups. Table 15 compares the results of CMARPS with that of the TAP

tool.
Table 15: Tool comparison for fighter missions
Total Offload Required
Set-up Time | Run Time F-16 F-15 A-10
(min) (min)
CMARPS 20-26 9-15 105.1 75.5 28.2
TAP Tool 1 0.05 125.4 80.4 38.5

The total offload required for each aircraft provided by the TAP tool is reasonably

close to those provided by CMARPS, according to Maj. Dave Ryer, AMC. The

51

computation time for the TAP tool is significantly less than that of CMARPS. This

computational time benefit is of major interest to AMC.
4.4 Conclusion

4.4.1 Important characteristics demonstrated in thesis

This thesis has demonstrated Iﬁany new characterjstics for a tool designed to
assign tankers to receiver groups during a deployment. The previous Quick Look Tool
considered tanker availability on a daily basis, and the tankers were not located at
specific bases. Our TAP tool considers tanker availability throughout the deployment
timeframe. Also, the locations of the refueling points and tankers are used to determine
more accurate assignments. The TAP tool takes into consideration the requirement that
some receiver groups need escort. Additionally, the previous tool assigned only one
tanker to each refueling point. Due to the flexibility in the number of aircraft in each
group, our tool allows more than one tanker to satisfy the fuel requirements at a single
refueling point.

Our TAP tool uses a form of goal programming to determine the mission
evaluation during the search process. We consider the total distance traveled by all
tankers in the mission, tanker reuse, and the time at which the receiver groups arrive at
their destination. Future research can allow the user to change the weights associated
with these goals. |

Since almost every computer in the Air Force contains Microsoft Office with

Excel, this tool is very portable. Also, most users are familiar with how to enter and

52

manipulate data within Excel spreadsheets. This increases the usability of the tool and
allows new personnel to use the tool with minimal training.

In addition to inputting the receiver group’s point of origin and dcstination, the
user may input a waypoint for each receiver group. This waypoint is a location the
receiver group travels to before proceeding to the destination base. The waypoint allows
pilots to fly alternate routes other than the great circle routes from origin to destination.
Many pilots dislike flying over the northern portion of the earth, since emergency landing
areas are scarce. The waypoint option allows AMC to generate more realistic missions

for deployments.

4.4.2 Problems with the TAP Tool

The TAP tool does not account for the tanker’s change in speed during the |
mission. Normally, tankers decrease their cruise speed during refueling. Tankers then
match the speed of fighter aircraft during the escort phase. A calculation would be
required to incorporate these changes in speed to determine any modifications to the
distance a tanker can travel. This can be accomplished during the preprocessing phase of
the program when the decision variable alternatives are determined.

Additionally, every tanker assigned to a refueling point for a fighter receiver
group escorts that group to the next critical point. The next critical point may be the next
refueling point or the receiver group’s destination. This is more restrictive than in an
actual deployment. First, fighter groups only need escort over open water, so we need to
use a database consisting of land formation locations. Second, although multiple tankers

may be needed to satisfy the fighter group’s fuel requirements at the refueling point, only

53

one tanker normally continues to escort the group. To incorporate this in the tool, tankers
that return to their base after the refueling should first satisfy a refueling point for a
fighter group. Then, an additional decision variable should be created for the tanker
eScorting the fighter group.

The previous quick look tool uses a third order polynomial equation to determine
the fuel burned by an aircraft for a period of flight distance. This method defermines fuel
burned based on a given flight distance. The TAP tool determines flight distances based
on fuel flow. Because of this discrepancy, TAP does not use the fuelburn functions in the
code. However, the polynomial coefficients for each aircraft type and fuelburn functions
remain in the code for future implementation.

Although we employ a heuristic to generate a solution, the computation time is
polynomial in nature. Each refueling point creates 15 alternatives for each tanker within
range. If only one base is within range with 15 tankers stationed there, then this one
additional refueling point creates 225 neW alternatives. Each alternative, when evaluated
during one iteration of TS, makes approximately 100*n calcuiations, where n is the
number of refueling points in the mission plan. Therefore, the total number of
calculations performed duriﬁg one iteration is at least (225*n)(150*n) = (33750*n%). This
number doubles in size for each additional tanker base that can service a refueling point.
We see that increasing the number of refuelings or tanker bases dramatically increases
the calculations being performed.

One way of decreasing this computation time is to decrease the candidate list size.
This is the number of neighbors considered at each iteration of fhe TS. Currently, the
user may choose to look at a fraction of the candidate list by inputting a skip number

54

greater than one; however, there is no logic to choosing which fraction of the candidate
list to consider. Future research could develop a means to use the current DV values to

| determine which part of the candidate list to consider.

55

Chapter 5.

5.1 Recommendations

The user interface for this tool is very generic. Future development of the tool
should include toolbars providing the user with easier methods to input receiver group
data, goal programming parameters, and tanker base information. The output data could
also be formatted to the user’s specifications.

The code for this tool is written in Visual Basic for Applications (VBA) Within
Excel. In order to run a different deployment, the current set of receiver groups must be
replaced with a new set. This includes the aircraft type, number of aircraft, base of origin
and destination, RLD and RDD. It would be nice to have the VBA program refer to
another workbook containing the list of receiver groups. In this way, the tool would be
independent of the input data and would only contain the aircraft performance and tanker
location data. |

Although most users are comfortable using Excel worksheets to manipulate data,
modifying the code to Java would bé an improvement. The Java code can be written to
import the receiver group data, which the user inputs through an Excel interface. Javais
platform independent and is object oriented. This object orientation could increase the
manageability of the code ahd possibly decrease the computation time.

Due to the computation time required for a single run with a small number of
iterations, it would be nice to allow the user to stop and restart the tool at any point of the

search process. The user would have access to the initial, best, and current mission plans

56

and would also be able to determine the number of iterations the search process should
continue to make once the tool is krestarted.

The tool developed in this research uses a constant tabu tenure. Instead, a reactive
approach would allow the tenure to change depending on the quality of the missions
generated. TS can become trapped in é local optimal section of the solution space
because the tenure is not large enough to limit returning to previous similar areas.

The tool currently allows the user to input one waypoint for each receiver group.
Future research could add the capability to define this routing further by inputting more
waypoints. Furthermore, the additional waypoints could be used along with code
development to account for restricted airspace.

Other specific characteristics could further enhance the code. These include
adding current characteristics of winds at several locations across the globe,
implementing changes in speeds for tankers during aerial-refueling and escort, and

adding base resource limitations to the constraints.

57

Appendix A

'Module: Schedule

'Author: Lt. Shay R. Capehart, USAF AFTT/ENS

'Last Updated: 24 Feb 00

'Function: This module contains the primary code for the Quick Look Tanker Deployment

' Tool. 'Sub Schedule()' is run when the ""Schedule’ button located on the
! INPUT sheet is pushed
Dim RPcount As Integer

Dim p(400, 10) As Variant
Sub Schedule()

! Initialize some variables. This can be removed if all variables are
* reset or destroyed after this Sub is run.

RPcount =0

DVcount =1

numTime = 15 " Number of increments for take-off tanker times.
getTime = Time

‘Define Output Arrays:

' missplan - mission planning data (Output to MISSION PLAN sheet)

' recqgmits - receiver refueling requirements data

! sched - current mission schedule

! initSol - best mission schedule

! bestSol - initial mission schedule

Dim missplan(200, 15), recrqmts(200, 15), rpvals(200, 40) As Variant

Dim rpdist(200, 15), tankBases(25, 5), DV(50000, 30), RPindex(200) As Variant
Dim sched(200, 15), initSol(200, 15), bestSol(200, 15), tempVar(200, 15) As Variant
Dim CloseLook(60) As Variant

'SECTION 1. INPUT DATA

‘i. Assign user input from INPUT worksheet to data array 'rdata’

' This assignment allows the user to input as many as 200 mission plans
' For data processing the number of mission plans entered by the user

' is counted and assigned to variable 'missions’

rdata = Sheets("INPUT").Range("A7:P207")
missions = Application.Count(Sheets("INPUT").Range("C7:C207"))

ii. Assign user input wind data from WINDS worksheet to data array 'winds’
‘winds = Sheets("WINDS").Range("A7:B207")

iii. Assign ICAO data list in the DISTCALC worksheet to data array 'ICAOlist' This assignment allows

' the user to maintain a list of up to 4000 airbases. The number of bases currently listed is counted

' and assigned to the variable ‘bases’ :

ICAOlist = Sheets("DISTCALC").Range("A1:F4000")

bases = Application.Count(Sheets("DISTCALC").Range("D2:D4000")) ‘Number of bases currently listed on DISTCALC sheet

'iv. Assign the bases containing tankers to the data array 'tankBases’

For q =2 To bases + 1
If ICAOlist(q, 6) > 0 Then
tankBases(p, 1) = ICAOlist(q, 1) 'Base ID
tankBases(p, 2) = ICAOlist(q, 2) ' Base Name
tankBases(p, 3) = ICAOlist(q, 4) 'Base Latitude
tankBases(p, 4) = ICAOlist(q, 5) ' Base Longitude
tankBases(p, 5) = ICAOlist(g, 6) '# of tankers at Base
numTbases = numTbases + 1 ' Increment the number of bases with tankers.

58

p=p+1
End If
Next q

'v. Assign receiver aircraft performance data to data array 'receivers’ This assignment allows the user

' to maintain data on up to 32 receiver aircraft. The number of aircraft currently listed is counted and

' assigned to the variable 'rectype’

receivers = Sheets("AIRCRAFT PERFORMANCE").Range("A5:P37") ‘By this definition up to 32 types of receivers may be
listed on

rectype = Application.Count(Sheets("AIRCRAFT PERFORMANCE").Range("B5:B37")) 'Number of receivers currently listed on
AIRCRAFT PERFORMANCE sheet

'vi. Assign tanker aircraft performance data to data array 'tankers' This assignment allows the user
to maintain data on up to 20 refueling tanker aircraft. The number of aircraft currently listed is counted and
' assigned to the variable 'tnkrtype’
tankers = Sheets("AIRCRAFT PERFORMANCE").Range("A41:AC61")
tnkrtype = Application.Count(Sheets("AIRCRAFT PERFORMANCE").Range("B41:B60"))

‘vii. Manipulate the input data.

Fori =1 To missions
ind = Find(rdata(, 2), Sheets("AIRCRAFT PERFORMANCE").Range("A5:A4000"), rectype)
n=1
While Sheets("INPUT").Cells(i + 6, 3) > receivers(ind, 2)

Sheets("INPUT").Range(Cells(i + 6, 1), Cells(i + 6, 15)).Copy
Sheets("INPUT").Paste Destination:=Sheets("INPUT").Range(Cells(missions + 7, 1), Cells(missions + 7, 15))
Sheets("INPUT").Cells(i + 6, 3) = Sheets("INPUT").Cells(i + 6, 3) - receivers(ind, 2)
Sheets("INPUT").Cells(missions + 7, 3) = receivers(ind, 2)
Sheets("INPUT").Cells(missions + 7, 1) = Sheets("INPUT").Cells(missions + 7, 1) & n
n=n+1
missions = missions + 1
Wend

Next i

rdata = Sheets("INPUT").Range("A7:P207")

missions = Application.Count(Sheets("INPUT").Range("C7:C207"))

'SECTION II. MISSION PLAN WORKSHEET

icount =2
RPindex(1) = 1

Fori=1 To missions
'i. Tansfer the Sortie ID from user input to mission plan data array 'missplan’
missplan(i, 1) = rdata(i, 1)

‘ii. Identify the latitude and longitude of user input origin and destination airbases and assign
' to mission plan data array 'missplan’
ind = Find(rdata(i, 4), Sheets("DISTCALC").Range("A1:E4000"), bases)
If ind = -1 Then
missplan(i, 2) = "N/A"
missplan(i, 3) = "N/A"
Else
missplan(i, 2) = Sheets("DISTCALC").Cells(ind, 4)
missplan(i, 3) = Sheets("DISTCALC").Cells(ind, 5)
End If
ind = Find(rdata(i, 5), Sheets("DISTCALC").Range("A1:E4000"), bases)
If ind = -1 Then
missplan(i, 4) = "N/A"
missplan(i, 5) = "N/A"
Else
missplan(i, 4) = Sheets("DISTCALC").Cells(ind, 4)
missplan(i, 5) = Sheets("DISTCALC").Cells(ind, 5)
End If
If rdata(i, 14) <> 0 Then
missplan(i, 14) = rdata(i, 14)

59

missplan(i, 15) = rdata(i, 15)
End If

‘'iii. Compute the flight window
missplan(i, 6) = rdata(i, 13) - rdata(i, 12)

‘iv. Calculate the flight distance
If rdata(i, 6) > 0 Then
missplan(i, 7) = rdata(i, 6)
Elself rdata(i, 14) = 0 Then
missplan(i, 7) = GreatCircleDistance(missplan(i, 2), missplan(i, 3), missplan(i, 4), missplan(i, 5))
Else
missplan(i, 7) = GreatCircleDistance(missplan(i, 2), missplan(i, 3), missplan(i, 14), missplan(, 15))
' Distance to waypoint.
rpdist(i, 2) = missplan(i, 7)
' Add distance from waypoint to destination to get total route distance.
missplan(i, 7) = missplan(i, 7) + GreatCircleDistance(missplan(i, 14), missplan(i, 15), missplan(i, 4), missplan(, 5))
End If ‘

'v. Referencing the AIRCRAFT PERFORMANCE worksheet, the escort requirement and number of
receivers per tanker values are assigned to the missplan data array
arcft = Find(rdata(i, 2), receivers, rectype)
missplan(i, 8) = receivers(arcft, 9)
missplan(i, 9) = receivers(arcft, 2)

'vi. Using the latitudes and longitudes of the origin and destination bases, the mean true
' course of the receiver is calculated. The mean true course, air speed, wind direction,
' and wind velocity are then used to calculate the receiver ground speed. Then we set
' receiver flight duration = great circle distance / ground speed.
' TC = TrueCourse(missplan(i, 7), missplan(i, 2), missplan(i, 3), missplan(i, 4), missplan(i, 5))
' grdspd = GroundSpeed(rdata(i, 7), TC, winds(i, 1), winds(i, 2))
missplan(i, 10) = missplan(i, 7) / rdata(i, 7)
missplan(i, 11) = rdata(i, 7)

'SECTION HII. OFFLOAD CALCULATIONS
"The following 'For' loop performs the OFFLOAD CALC Calculations

recrqmts(i, 1) = rdata(i, 1) ' Sortie ID
recrgmts(i, 2) = rdata(i, 11) ' Total Fuel Capacity
recrqmits(i, 3) = rdata(i, 7) ' True air speed
recrqmits(i, 4) = missplan(i, 11) ' Ground Speed
recrgmts(i, 5) = receivers(arcft, 7) ' Climb Fuel
recrgmis(i, 6) = receivers(arcft, 4) ' Fuel Flow
recrqmts(i, 7) = receivers(arcft, 6) ' Fuel Reserve
k1 = receivers(arcft, 12) ' Four coefficients used to find the fuel bumn rate
k2 = receivers(arcft, 13)

k3 = receivers(arcft, 14)

k4 = receivers(arcft, 15)

temp = rdata(i, 3) * (recflburn(missplan(i, 7), recrqmts(i, 4), recrgmts(i, 2), recrqmts(i, 7), rdata(i, 9), rdata(i, 10), recrgmts(i, 5), k1,
k2, k3, k4) - (recrqmts(i, 2) - recrqmts(i, 7)))

If temp < O Then

recrqmts(i, 8) =0 ' Temp Slot
Else

recrqmts(i, 8) = temp ' Temp Slot
End If
' Total fuel required for trip

- recrqmts(i, 9) = recflburn(missplan(i, 7), recrqmts(i, 4), recrqmts(i, 2), recrqmts(i, 7), rdata(i, 9), rdata(i, 10), recrqmits(i, 5), k1, k2,
k3, k4)

' Distance between RPs
recrqmts(i, 10) = (recrqmts(i, 2) - recrqmts(i, 7)) * recrqmts(i, 4) / recrgmts(i, 6)

'SECTION IV. Calculations for the refueling points.

rpvals(i, 1) = rdata(i, 1) ' Sortie ID
rpvals(i, 2) = missplan(i, 2) ' Origin Latitude

60

rpvals(i, 3) = missplan(i, 3) ' Origin Longitude
rpvals(i, 4) = missplan(i, 4) ' Destination Latitude
rpvals(i, 5) = missplan(i, 5) ' Destination Longitude
rpvals(i, 6) = recrgmts(i, 10) ' Distance between RPs

' Distance required for entire trip.
fuelReq = recrqmts(i, 5) + (missplan(i, 7) - 100) * recrqmts(i, 6) / recrqmts(i, 4)

' Some aircraft just get refueled right away after take-off. This will last the rest of the trip.
! Let's assume 100 miles into the flight.

' If distance required is greater than distance between refueling points.
If fuelReq > recrqmits(i, 2) - recrqmts(i, 7) Then
' If dist between refueling points is greater than total dist...
If rpvals(i, 6) > missplan(i, 7) Then
' set dist to first refueling equal to 20 miles.
rpdist(i, 1) = 100
' else if aircraft need escort...
Elself missplan(i, 8) = "Y" Then
'1st ref dist = dist between RPs-(climb fuel*ground speed/fuel flow)
rpdist(i, 1) = rpvals(y, 6) - (recrgmts(i, 5) * recrqmits(i, 4) / recrqmts(i, 6))
' else if input sheet has 1st refueling point overide...
Elself rdata(i, 16) > 0 Then
' set 1st refueling point to user input.
rpdist(i, 1) = rdata(i, 16)
Else
rpdist(, 1) = rpvals(, 6) - (recrqmts(i, 5) * recrqmts(i, 4) / recrgmts(i, 6))
End If
End If

' Number of additional legs needed
rpvals(i, 7) = Ceiling((missplan(, 7) - rpdist(i, 1)) / rpvals(i, 6) - 1)

* Distance to first RP
rpvals(i, 8) = rpdist(i, 1)

' Get information for missions that need refuelings.
If rpvals(i, 8) > 0 Then ' If the distance to first RP is greater than 0.

' If there is no waypoint waypoint...
If rpdist(i, 2) = 0 Then
' Path azymuth from origin to destination.
rpvals(i, 9) = getAz(rpvals(i, 2), rpvals(i, 3), rpvals(i, 4), rpvals(i, 5))

' Latitude for the first refueling point »
rpvals(i, 10) = getLat(rpvals(i, 2), rpdist(i, 1), rpvals(i, 9))

' Longitude for the first refueling point
rpvals(i, 11) = getLong(rpvals(i, 3), rpdist(, 1), rpvals(i, 9), rpvals(i, 10))

' elseif the 1st RP is before the waypoint...
Elself rpvals(i, 8) < rpdist(i, 2) Then
' Path azymuth from origin to waypoint.
rpvals(i, 9) = getAz(rpvals(i, 2), rpvals(i, 3), rdata(i, 14), rdata(i, 15))

' Latitude for the first refueling point
rpvals(i, 10) = getLat(rpvals(i, 2), rpdist(i, 1), rpvals(i, 9))

' Longitude for the first refueling point

rpvals(i, 11) = getLong(rpvals(i, 3), rpdist(i, 1), rpvals(i, 9), rpvals(i, 10))
' else the 1st RP is after the waypoint
Else

' Path azymuth from waypoint to destination.

rpvals(i, 9) = getAz(rdata(i, 14), rdata(i, 15), rpvals(i, 4), rpvals(i, 5))

dist = rpdist(i, 1) - rpdist(i, 2)
' Latitude for the first refueling point

61

rpvals(i, 10) = getLat(rdata(i, 14), dist, rpvals(i, 9))

 Longitude for the first refueling point
rpvals(i, 11) = getLong(rdata(i, 15), dist, rpvals(i, 9), rpvals(i, 10))
End If

' Build the DV alternatives by finding the bases within range.
baseWithinRange = False

RPoffloadSet = False

numTankersAssignedToRP = 1

' Continue this loop which adds tanker to the refueling point, starting
' with one, until the RP is satisfied.

While baseWithinRange = False

! Put this information into the RP list.
Call buildRPs(rdata(i, 1), 1, rpvals@, 10), rpvals(i, 11), numTankersAssignedToRP)

For w = 1 To numTankersAssignedToRP
For q = 1 To numTbases ' For each base with tankers.
a=0
b=0
c=0
' First make temp] the total distance the tanker can travel.
temp1 = (tankers(3, 5) - tankers(3, 6)) * tankers(3, 3) / tankers(3, 4)
' If RG needs escort, then add the distance between RPs.
If missplan(i, 8) ="Y" Then
' If there are more refueling points for this RG, then the
' tanker must escort this group the entire distance between
' refuelings "rpvals(i,6)".
If rpvals(i, 7) > 0 Then
¢ =rpvals(i, 6)
templ =templ -c
' If there are no more refuelings, then the tanker will
' escort the fighters to their destination.
Else
' ¢ equals total flight distance minus distance to 1st refueling point.
¢ = missplan(i, 7) - rpdist(, 1)
templ =templ - ¢
End If
End If

' If there are more refuelings...
If rpvals(i, 7) > 0 Then
* find the coordinates for the next RP
If rpdist(i, 2) = 0 Then
azym = getAz(rpvals(i, 10), rpvals(i, 11), rpvals(i, 4), rpvals(i, 5))
rpvals(i, 10 + 2) = getLat(rpvals(i, 10), rpvals(i, 6), azym)
rpvals@, 11 + 2) = getLong(rpvals(i, 11), rpvals(i, 6), azym, rpvals(i, 10 + 2))
Elself rpdist(i, 1) + rpvals(i, 6) < rpdist(i, 2) Then
azym = getAz(rpvals(i, 10), rpvals(i, 11), rdata(i, 14), rdata(i, 15))
rpvals(i, 10 + 2) = getLat(rpvals(i, 10), rpvals(i, 6), azym)
rpvals(i, 11 + 2) = getLong(rpvals(i, 11), rpvals(i, 6), azym, rpvals(i, 10 + 2))
Else
azym = getAz(rdata(i, 14), rdatai, 15), rpvals(i, 4), rpvals(i, 5))
dist = (rpdist(i, 1) + rpvals(, 6)) - rpdist(i, 2)
rpvals(i, 10 + 2) = getLat(rdata(i, 14), dist, azym)
rpvals(i, 11 + 2) = getLong(rdata(i, 15), dist, azym, rpvals(i, 10 + 2))
End ¥
End If

' Subtract from that the distance to this refueling point
" and back.
If missplan(i, 8) = "Y" Then
If rpvals(i, 7) > O Then
a = GreatCircleDistance(rpvals(i, 10), rpvals(i, 11), tankBases(q, 3), tankBases(q, 4))
b = GreatCircleDistance(rpvals(i, 10 + 2), rpvals(i, 11 + 2), tankBases(q, 3), tankBases(q, 4))
templ =templ -a-b
Else

62

a = GreatCircleDistance(rpvals(i, 10), rpvals(i, 11), tankBases(q, 3), tankBases(q, 4))
b = GreatCircleDistance(rpvals(i, 4), rpvals(i, 5), tankBases(q,3), tankBases(q, 4))
templ =templ -a-b
End If
Else
a = GreatCircleDistance(rpvals(i, 10), rpvals(i, 11), tankBases(q, 3), tankBases(q, 4))
b=a
templ =templ -a-b
End If
* Calculate fuel needed at this refueling point: # aircraft*(total dist-dist to first RP)*fuel flow/TAS)
' This first temp2 is the amount of fuel needed to finish the total distance.
' This is mainly meant for the tankers that get just enough fuel to get to
’ their destination.
temp2 = (Application.Min(rdata(i, 3) * (missplan(i, 7) - rpvals(i, 8)) * recrqmts(i, 6) / recrqmts(i, 3), rdata(i, 3) * (recrqmts(i,
5) + (rpvals(i, 8) * recrqmts(i, 6) / recrqmts(i, 3))))) / numTankersAssigned ToRP
' If the sortie is fighters or there are more refuelings
' temp? represents a full refueling.
If missplan(i, 8) = "Y" Or rpvals(i, 7) > 0 Then temp2 = (rdata(i, 3) * (recrqmts(i, 2) - recrqmts(i, 7))) /
numTankersAssignedToRP
' If the receiver group gets refueled imediately after take-off, then
' temp2 is climb fuel.
If rpvals(i, 8) = 100 Then temp2 = (rdata(i, 3) * recrqmts(i, 5)) / numTankersAssignedToRP

' Offload needed at this RP)
If numTankersAssignedToRP = 1 And RPoffloadSet = False Then
offload = temp2
RPoffloadSet = True
End If
' How much this amount relates to in terms of distance for the tanker
temp2 = temp2 * tankers(3, 3) / tankers(3, 4)

* Compare values to see if the tanker can arrive at the RP with
' enough fuel for the receivers.
If temp] - temp2 > O Then
' Is there a tanker close enough?
baseWithinRange = True
! For each tanker at that base
For k = 1 To tankBases(q, 5)
' For each time increment
For p=1 To numTime
DV(DVcount, 1) = rdata(i, 1) ' Sortie ID
DV(DVcount, 2)=1 ' RP number
DV(DVcount, 3) = tankBases(q, 1) 'Base ID
DV(DVcount, 4) = tankBases(q, 2) ‘' Base name
' Total distance for tanker trip.
DV(DVcount, 5)=a+b+c
' Fuel available for offload at the RP.
DV(DVcount, 6) = temp1 * tankers(3, 4) / tankers(3, 3)
DV(DVcount, 7)=1+5*(p-1) 'Take-off time

DV(DVcount, 8) =k ' Tanker number
DV(DVcount, 12) =a ' Distance from base to RP
DVcount = DVcount + 1 ' Increment the total number of decision variables.
Next p
Nextk
End If
Nextq

If baseWithinRange = True Then
* Record the number at which the next RP decision variables count.
RPindex(icount) = DVcount
icount = icount + 1)

End If

" Increment the number of tankers for this RP if there are no tankers capable
' of refueling this RP.
If baseWithinRange = False Then numTankersAssignedToRP = numTankersAssignedToRP + 1

Next w

63

Wend

' Get the remaining refueling points
If rpvals(i, 7) > 0 Then ' If this sortie has more than 1 refueling point.
For j = 1 To rpvals(i, 7) ' For each remaining RP.

baseWithinRange = False
RPoffloadSet = False
numTankersAssignedToRP = 1
While baseWithinRange = False

* Add this information to the next spot in the RP index.
Call buildRPs(rdata(i, 1), j + 1, rpvals(i, 10 + 2 * j), rpvals(i, 11 + 2 * j), numTankersAssignedToRP)

For w = 1 To numTankersAssignedToRP
' Build the decision variables
For q =1 To numTbases ' For each base with tankers.
a=0
b=0
c=0
templ =0
' First make temp1 the total distance the tanker can travel.
temp] = (tankers(3, 5) - tankers(3, 6)) * tankers(3, 3) / tankers(3, 4)
' If fighters, then subtract the distance between RPs.
If missplan(i, 8) = "Y" Then
* If there are more refueling points for this RG, then the
* tanker must escort this group the entire distance between
' refuelings "rpvals(i,6)".
If rpvals(i, 7) > j Then
¢ = rpvals(i, 6)
templ =templ - ¢
* If there are no more refuelings, then the tanker will
* escort the fighters to their destination.
Else
¢ = missplan(i, 7) - rpdist(i, 1) - j * rpvals(i, 6)
templ = templ - ¢
End If
End If

' If there are more refuelings, find their coordinates
If rpvals(i, 7) > j Then
If rpdist(i, 2) = 0 Then
azym = getAz(rpvals(i, 10 + 2 * j), rpvals(i, 11 + 2 * j), rpvals(i, 4), rpvals(i, 5))
rpvals(i, 10 + 2 * (j + 1)) = getLat(rpvals(i, 10 + 2 * j), rpvals(i, 6), azym)
rpvals(i, 11 + 2 * (j + 1)) = getLong(rpvals(@, 11 + 2 * j), rpvals(i, 6), azym, rpvals(i, 10 + 2 * (j + 1)))
Elself rpdist(i, 1) + (j + 1) * rpvals(i, 6) < rpdist(i, 2) Then
azym = getAz(rpvals(i, 10 + 2 * j), rpvals@, 11 + 2 * j), rdata(, 14), rdata(i, 15))
rpvals@i, 10 + 2 * (j + 1)) = getLat(rpvals(i, 10 + 2 * j), rpvals(i, 6), azym)
rpvals@, 11 + 2 * (j + 1)) = getLong(rpvals(i, 11 + 2 * j), rpvals(i, 6), azym, rpvals(i, 10 +2 * (j + 1)))
Else
azym = getAz(rdata(i, 14), rdata(i, 15), rpvals(i, 4), rpvals(i, 5))
- dist = (rpdist(, 1) + (+ 1) * rpvals(i, 6)) - rpdist(i, 2)
rpvals(i, 10 + 2 * (j + 1)) = getLat(rdata(i, 14), dist, azym)
rpvals(i, 11 + 2 * (j + 1)) = getLong(rdata(i, 15), dist, azym, rpvals@i, 10 + 2 * (j + 1))
End If
End If

' Subtract the distance to the RP
If missplan(i, 8) = "Y" Then
' If there are more refueling points, then find the
' lat and long for the next refueling point.
If rpvals(i, 7) > j Then ‘
a = GreatCircleDistance(rpvals(i, 10 + 2 * j), rpvals(i, 11 + 2 * j), tankBases(q, 3), tankBases(q, 4))

b = GreatCircleDistance(rpvals(i, 10 + 2 * (j + 1)), rpvals(i, 11 + 2 * (j + 1)), tankBases(q, 3), tankBases(q, 4))

templ =templ -a-b
' Otherwise, subtract the distance to this RP and the distance
' to the destination.

64

Else
a = GreatCircleDistance(rpvals(i, 10 + 2 * j), rpvals(i, 11 + 2 * j), tankBases(q, 3), tankBases(q, 4))
b = GreatCircleDistance(rpvals(i, 4), rpvals(i, 5), tankBases(q, 3), tankBases(q, 4))
templ =templ -a-b .
End If
Else
a = GreatCircleDistance(rpvals(i, 10 + 2 * j), rpvals(i, 11 + 2 * j), tankBases(q, 3), tankBases(q, 4))
b=a
templ =templ -a-b
End If
' Fuel needed at this refueling point: # aircraft*(total-reserve fuel)
' We are assuming the the only type of receivers that need more than
' one refueling are fighters. Thus, temp2 represents a full refueling.
If rpvals(i, 7) > j Then
temp2 = (rdata(i, 3) * (recrqmts(, 2) - recrqmts(i, 7))) / numTankersAssignedToRP
Else
temp2 = (rdata(i, 3) * (missplan(i, 7) - (rpvals(i, 8) + j * rpvals(i, 6))) * recrqmits(i, 6) / recrqmis(i, 3)) /
numTankersAssignedToRP
End If

' Add offload to total RG offload.
If numTankersAssignedToRP = 1 And RPoffloadSet = False Then
offload = offload + temp2
RPoffloadSet = True
End If .
' How much this amount relates to in terms of distance for the tanker
temp?2 = temp2 * tankers(3, 3) / tankers(3, 4)
' Compare values to see if the tanker can arrive at the RP with
* enough fuel for the receivers.
If temp] - temp2 > 0 Then
' Is there a tanker close enough?
baseWithinRange = True
' For each tanker at that base.
For k = 1 To tankBases(q, 5)
' For each time increment.

Forp=1To1l
DV(DVcount, 1) = rdata(i, 1) ' Sortie ID
DV(DVcount, 2)=j + 1 ' RP number

DV(DVcount, 3) = tankBases(q, 1) 'Base ID
DV(DVcount, 4) = tankBases(q, 2) ' Base name

! Total distance for tanker trip

DV(DVcount, 5)=a+b+c

* Fuel available for offload at the RP.

DV(DVcount, 6) = temp1 * tankers(3, 4) / tankers(3, 3)

DV(DVcount, 7) = p ' Take-off time
DV(DVcount, 8) =k ' Tanker number
DV(DVcount, 12)=a ' Distance from base to RP
DVcount = DVcount + 1 ' Increment the total number of decision variables.
Next p
Nextk
End If

Nextq

If baseWithinRange = True Then
' Record the number at which the next RP decision variables count.
RPindex(icount) = DVcount
icount = icount + 1

End if

Next w

' Increment the number of tankers for this RP if there are no tankers capable
' of refueling this RP.
If baseWithinRange = False Then numTankersAssignedToRP = numTankersAssignedToRP + 1
Wend
Next j
End If

65

' Display the total offload required for this RG
Sheets("INPUT").Cells(i + 6, 17) = offload
End If
Nexti

' set the user greedy parameter.
Greedy = Sheets("input”).Cells(2, 10)

* If the user has chosen to use the greedy construction heuristic to build the
! initial solution...
If Greedy = "Y" Then
Fori=1To RPcount 'ForeachRP.
tempDist = 8000
templndex = 0

* Get the index for this mission
ind = Find(DV(RPindex(i), 1), missplan, missions)

' For each DV that can be assigned to this RP.
For m = RPindex(i) To RPindex(i + 1) - 1
conflict = False
' Choose the base with the smallest round-trip distance for this RP.
If DV(m, 5) < tempDist Then
Forn=1Toi 'For each of the previous RP assignments.
' Check to see if the same tanker has already been assigned.
If DV(m, 3) = sched(n, 3) And DV(m, 8) = sched(n, 6) Then conflict = True
Nextn
' If the tanker hasn't already been assigned, record the distance and index for this DV.
If conflict = False Then

If DV(m, 2) = 1 Then
TOA = ((missplan(ind, 7) - rpvals(ind, 8)) / recrqmts(ind, 3)) + DV(m, 7) + DV(m, 12)/ tankers(3, 3)
sched(i, 10) = TOA
TOD = TOA - (missplan(ind, 7) / recrqmts(ind, 3))
sched(i, 9) = TOD
If TOD > 0 Then
tempDist = DV(m, 5)
tempIndex =m
End If
Else
tempDist = DV(m, 5)
tempIndex = m
End If
End If
End If
Next m
' If all tankers capable of servicing this RP have been
' assigned at least once.
If tempIndex = 0 Then
IfDV(m-1,2)=1Then
For m = RPindex(i) To RPindex(i+ 1) - 1
conflict = False
' Choose the closet base for round-trip distance to this RP.
If DV(m, 5) < tempDist Then
Forn=1Toi - 1" For each of the previous RP assignments.
' Check to see if the same tanker has already been assigned.
If DV(m, 3) = sched(n, 3) And DV(m, 8) = sched(n, 6) And DV(m, 7) < 10 + sched(n, 5) Then conflict = True
Nextn
If sched(- 1, 1) & sched(i - 1, 2) = DV(m, 1) & DV(m, 2) Then
If sched(i - 1, 5) <> DV(m, 7) Then conflict = True
End If
' If the tanker hasn't already been assigned, record the distance and index for this DV.
If conflict = False Then

If DV(m, 2) =1 Then
TOA = ((missplan(ind, 7) - rpvals(ind, 8)) / recrgmits(ind, 3)) + DV(m, 7) + DV(m, 12) / tankers(3, 3)
sched(i, 10) = TOA
TOD = TOA - (missplan(ind, 7) / recrqmts(ind, 3))

66

sched(i, 9) = TOD
If TOD > 0 Then
tempDist = DV(m, 5)
tempIndex =m
End If
Else
tempDist = DV(m, 5)
templndex =m
End If
End If
End If
Next m
' If there still is no tanker assigned, assign the last
' alternative for this DV.
If tempIndex = 0 Then
For m = RPindex(i - 1) To RPindex(@) - 1
IfDV(n, 9) =1 Then
tempDist = DV(m, 5)
tempIndex = RPindex(i) + (m - RPindex(i - 1))
End If
Next m
End If
Else
tempDist = DV(RPindex@i + 1) - DV(m - 1, 2), 5)
tempIndex = RPindex@i + 1) - DV(m - 1, 2)
End If
End If

DV(templIndex, 9) =1

' Record this schedule

sched(i, 1) = DV(templndex, 1)
sched(i, 2) = DV(templndex, 2)
sched(i, 3) = DV(tempIndex, 3)
sched(i, 4) = DV(templndex, 4)
sched(i, 6) = DV(templndex, 8)
sched(i, 7) = DV(templndex, 5)
sched(i, 11) = DV(tempIndex, 12)

' Check to see if this DV is for a RP other than the first one for the receiver group.
' If it is, calculate the take-off time.
If sched(i, 2) <> 1 Then
a=0
templ = False
While temp1 = False
a=a+1
If sched(i - a, 2) < 2 Then temp1 = True
Wend
sched(i, 5) = sched(i - a, 8) + (sched(i, 2) - sched(i - a, 2)) * (rpvals(ind, 6) / recrqmts(ind, 3)) - DV(templndex, 12) /
tankers(3, 3)
Else
sched(i, 5) = DV(templndex, 7)
End If

' Determine the time that this refueling will take place
sched(i, 8) = sched(i, 5) + DV(tempIndex, 12)/ tankers(3, 3)

' If this is the first refueling point for the receiver group, then

' determine the time of arrival (TOA) and departure (TOD) for the

' receiver group. :

If sched(i, 2) = 1 Then
TOA = ((missplan(ind, 7) - rpvals(ind, 8)) / recrqmts(ind, 3)) + sched(i, 8)
sched(i, 10) = TOA
TOD = TOA - (missplan(ind, 7) / recrqmts(ind, 3))
sched(i, 9) = TOD

End If

Next i

67

* If the greedy construction heuristic is not chosen, then build the initial
* solution by choosing the first available tanker to each RP in the DV list.
Else
Fori= 1 To RPcount
| DV(RPindex(i), 9) =1
| sched(i, 1) = DV(RPindex(i), 1)
| sched(i, 2) = DV(RPindex(i), 2)
sched(i, 3) = DV(RPindex(i), 3)
| sched(i, 4) = DV(RPindex(i), 4)
| sched(i, 6) = DV(RPindex(i), 8)
| sched(i, 7) = DV(RPindex(i), 5)

sched(i, 11) = DV(RPindex(), 12)

|

|

i ' Get the index for this mission

| ind = Find(sched(, 1), missplan, missions)

' Check to see if this DV is for a RP other than the first one for the receiver group.
' If it is, calculate the take-off time.
If sched(i, 2) > 1 Then

a=0
temp1 = False
While temp1 = False
a=a+1
If sched(i - a, 2) = 1 Then templ = True
Wend
sched(i, 5) = sched(i - a, 8) + (sched(i, 2) - sched(i - a, 2)) * (rpvals(ind, 6) / recrqmts(ind, 3)) - DV(RPindex(i), 12) / tankers(3,
3)
Else
sched(i, 5) = DV(RPindex(@), 7)
End If
' Determine the time that this refueling will take place
sched(i, 8) = sched(i, 5) + DV(RPindex(i), 12) / tankers(3, 3)
' If this is the first refueling point for the receiver group, then
' determine the time of arrival (TOA) and departure (TOD) for the
' receiver group.
If sched(i, 2) = 1 Then
TOA = ((missplan(ind, 7) - rpvals(ind, 8)) / recrqmts(ind, 3)) + sched(, 8)
sched(i, 10) = TOA
TOD = TOA - (missplan(ind, 7) / recrgmts(ind, 3))
sched(i, 9) = TOD
End If
Nexti
End

' Record initial solution to see if it changes
For n =1 To RPcount
Fori=1To 15
initSol(n, i) = sched(n, i)
Nexti N
Nextn

numlterations = Sheets("INPUT").Cells(3, 8)
tenure = 1

bestVal = 1000000

* Tabu Search

For n =1 To RPcount
CloseLook(n) = True

Nextn

infeasible = True

' record the skip number.
modNum = Sheets("INPUT").Cells(4, 10)

For k =1 To numlterations

68

' Display the current iteration.
Sheets("input").Cells(2, 12) =k

Skip = (k Mod modNum) + 1

' Count how many tankers are reused in the current solution.
For q=1 To RPcount - 1
p=1
goon = True
While goon = True
If sched(q, 6) & sched(q, 3) = sched(q + p, 6) & sched(q + p, 3) Then
Ifp+q<iAndq<>iThen
currentReuse = currentReuse + 1
goon = False
End If
End If
If p = RPcount Then
goon = False
Else
p=p+1
End i
Wend
Nextq

i=1
While i < RPcount + 1

' First look at the current solution to count how many conflicts there are.

conflictNumbers = 0

currentNegTODs = 0

If CloseLook(i) = True Then
If sched(i, 2) = 1 Then

' Count how many TODs are less than zero.
If sched(i, 9) < 0 Then currentNegTODs = currentNegTODs + 1

h=0
While sched(i + h, 1) = sched(i, 1)
For n =1 To RPcount
If sched(n, 6) & sched(n, 3) = sched(i + h, 6) & sched(i + h, 3) And i + h <> n Then
If sched(n, 5) > sched(i + h, 5) Then
temp1 = (sched(n, 5) - (3 + sched(+ h, 5) + sched(i + h, 7) / 430))
Else
temp1 = (sched(i + h, 5) - (3 + sched(n, 5) + sched(n, 7) / 430))
End If
If temp1 < O Then conflictNumbers = conflictNumbers + 1
End If
Nextn
h=h+1
Wend
Else

For n =1 To RPcount
If sched(n, 6) & sched(n, 3) = sched(i, 6) & sched(i, 3) And i < n Then

If sched(n, 5) > sched(i, 5) Then
temp1 = (sched(n, 5) - (3 + sched(i, 5) + sched(, 7) / 430))

Else
templ = (sched(i, 5) - (3 + sched(n, 5) + sched(n, 7) / 430))
End
If temp1 < O Then conflictNumbers = conflictNumbers + 1
End If
Next n
End If

' If there are no problems with the current solution, don't take
' a close look at it again.

69

If currentNegTODs = 0 And conflictNumbers = 0 Then CloseLook(i) = False
End If ‘ :

* Look at each neighbor by changing one RP at a time
j =RPindex(i) + (modNum - 1)
While j < RPindex(+ 1)

' Save the current solution
For p = 1 To RPcount
Forn=1To 15
tempVar(p, n) = sched(p, n)
Nextn
Next p

' Change to a new DV for this RP
sched(i, 1) =DV(j, 1)

sched(i, 2) = DV(, 2)

sched(i, 3) =DV(j, 3)

sched(i, 4) = DV(j, 4)

sched(i, 6) =DV(j, 8)

sched(i, 7) =DV(j, 5)

sched(i, 11) = DV(, 12)

ind = Find(sched(i, 1), missplan, missions)
KXXXXXXX

' If we are changing a RP other than a 1st RP, calculate the
' take-off time for this tanker.
If DV(j, 2) <> 1 Then
a=0
templ = False
While temp1 = False
a=a+l1
If sched(i - a, 2) < 2 Then templ = True
Wend
sched(i, 5) = sched(i - a, 8) + (sched(i, 2) - sched(i - a, 2)) * (rpvals(ind, 6) / recrqmts(ind, 3)) - DV(j, 12) / tankers(3, 3)
DV(j, 7) = sched(i, 5)
Else
sched(i, 5) =DV(, 7)
End If

' Time of refueling
sched(i, 8) = sched(i, 5) + sched(i, 11) / tankers(3, 3)

' If this is the first refueling point, determine when the receiver
' group will arrive at the destination
If sched(i, 2) = 1 Then

If sched(i, 1) & sched(, 2) = sched(i + 1, 1) & sched(i + 1, 2) Then
sched(i + 1, 8) = sched(, 8) '
End If

' Also calculate the new take-off time for any other tankers
' assigned to other refueling points with this same RG.
n=1
While sched(i + n, 1) = sched(i, 1)
sched(i + n, 5) = sched(, 8) + (sched(i + n, 2) - sched(i, 2)) * (rpvals(ind, 6) / recrqmts(ind, 3)) - sched(i +n, 11)/
tankers(3, 3)
n=n+1
Wend

TOA = ((missplan(ind, 7) - rpvals(ind, 8)) / recrgmts(ind, 3)) + sched(, 8)
sched(i, 10) = TOA

TOD = TOA - (missplan(ind, 7) / recrqmts(ind, 3))

sched(i, 9) = TOD

70

End If

' Evaluate this new solution somehow
distPen =0
templ =0
newConflict =0
conflictPen =0
conflictBonus = 0
latePen =0
earlyBonus = 0
newReuse =0
reuseBonus =0
earlyPen =0
negTODpen =0
syncPen =0

* If this is a DV already in the solution, set the penalty to Big-M

' so that it is not chosen for the current move.

If sched(i, 3) & sched(i, 5) & sched(i, 6) = tempVar(i, 3) & tempVar(i, 5) & tempVar(i, 6) Then
DV(j, 10) = 1000000

Else

' penalize for making the receivers take off too early.
If TOD < 0 Then earlyPen = 500000

If earlyPen <> 500000 Then

' penalize for late receivers

If sched(i, 2) = 1 Then
If Max(0, ((TOA) - 24 * missplan(ind, 6))) > O Then latePen = 600000
earlyBonus = 10 * Max(0, ((24 * missplan(ind, 6)) - (TOA)))

End If

If latePen <> 600000 Then
For n=1 To RPcount
distPen = distPen + sched(n, 7)
' penalize for having the same aircraft take off sooner than 10 hours apart
If sched(n, 6) & sched(n, 3) = sched(i, 6) & sched(i, 3) And i <> n Then
If sched(n, 5) > sched(i, 5) Then
temp1 = (sched(n, 5) - (3 + sched(i, 5) + sched(i, 7) / 430))
Else
temp1 = (sched(i, 5) - (3 + sched(n, 5) + sched(n, 7) / 430))
End If
If temp1 < O Then newConflict = newConflict + 1
If sched(i, 6) & sched(i, 3) <> tempVar(i, 6) & tempVar(i, 3) Then newReuse = newReuse + 1
End If

' penalize for not having multiple first refueling points at the same time
If sched(n, 2) = 1 And sched(i, 2) = 1 And sched(n, 1) = sched(i, 1) Then
If sched(n, 8) <> sched(i, 8) Then syncPen = 40000
End if
Next n

' If this is the first refueling point for a receiver group,
* check the other refueling points to make sure you haven't
' created a conflict.
If sched(i, 2) = 1 Then
h=0
While sched(i + h, 1) = sched(i, 1)
If h >0 Then
' Take-off Time
sched(i + h, 5) = sched(i, 8) + (sched(i + h, 2) - sched(i, 2)) * (rpvals(ind, 6) / recrgmts(ind, 3)) - sched(i + h,
11) / tankers(3, 3)
' Time of refueling
sched(i + h, 8) = sched(i + h, 5) + sched(i + h, 11) / tankers(3, 3)
End If
For n =1 To RPcount

71

If sched(n, 6) & sched(n, 3) = sched(i + h, 6) & sched(i + h, 3) Andi + h<>n Then
If sched(n, 5) > sched(i + h, 5) Then
templ = (sched(n, 5) - (3 + sched(i + h, 5) + sched(i + h, 7) / 430))
Else
templ = (sched(i + h, 5) - (3 + sched(n, 5) + sched(n, 7) / 430))
End If
If temp1 < O Then newConflict = newConflict + 1
End If
Nextn
h=h+1
Wend
End If

reuseBonus = 500 * newReuse + 2000 * currentReuse

' Reward if the number of conflicts has decreased.

' Penalize if there are more conflicts.

If newConflict < conflictNumbers Then
conflictBonus = -100000

Elself newConflict > 0 Or conflictNumbers > 0 Then
conflictPen = 90000

End If
If currentNegTODs > 0 Then
negTODpen = -100000 * currentNegTODs
End If
End If
End If

DV(j, 18) = conflictPen
DV(j, 19) = conflictBonus
DV(j, 20) = distPen

DV(j, 21) = reuseBonus
DV(j, 22) = earlyPen
DV(j, 23) = negTODpen
DV(j, 24) = earlyBonus
DV(j, 25) = latePen

DV, 26) = newConflict
DV(j, 27) = conflictNumbers
DV(j, 28) = CloseLook(i)
DV(j, 29) = infeasible

DV(j, 10) = conflictPen + conflictBonus + distPen - reuseBonus + syncPen + earlyPen + negTODpen + sched(, 6) -
earlyBonus + latPen

End If

' Return the current solution
For p = 1 To RPcount
Forn=1To 15
sched(p, n) = tempVar(p, n)
Nextn
Next p
j=j +modNum
Wend

i=i+1
Wend

' Check to see if the current solution is now feasible.
If infeasible = True Then
infeasible = False
Fori=1 To RPcount
If CloseLook(i) = True Then
infeasible = True
End If
Next i

72

If infeasible = False Then tenure = Sheets("INPUT").Cells(2, 8)
End If

' Look at all the neighbors and choose the smallest that isn't tabu
objectiveVal = 1000000 ‘
For j = 1 To RPcount
i =RPindex(j) + (modNum - 1)
While i < RPindex(j + 1)
'Sheets("input").Cells(4, 12) =i
If DV(i, 10) <= objectiveVal Then
IfDV(j, 11) <1 Then
objectiveVal = DV(i, 10)
DVmove =i
movelndex =j
End If
If DV(i, 10) < bestVal And infeasible = False And DV(i, 10) > -50000 Then
bestVal = DV(i, 10)
objectiveVal = DV(, 10)
DVmove =1i
movelndex =j
End If
End If
i=1+modNum
Wend
Next j

' Make the move
currentObjVal = DV(DVmove, 10)
For n = RPindex(movelndex) To RPindex(moveIndex + 1) - 1
IfDV(n, 9)=1Then DV(n, 9)=0
If DV(n, 3) = DV(DVmove, 3) Then DV(n, 11) = tenure + 1
Nextn
i=movelndex
sched(i, 1) = DV(DVmove, 1)
sched(i, 2) = DV(DVmove, 2)
sched(i, 3) = DV(DVmove, 3)
sched(i, 4) = DV(DVmove, 4)
sched(i, 6) = DV(DVmove, 8)
sched(i, 7) = DV(DVmove, 5)
sched(i, 11) = DV(DVmove, 12)

ind = Find(sched(i, 1), missplan, missions)

If sched(i, 2) = 1 Then
' Take-off Time
sched(i, 5) = DV(DVmove, 7)
' Time of refueling
sched(i, 8) = sched(i, 5) + sched(i, 11) / tankers(3, 3)
h=1
While sched(i + h, 1) = sched(i, 1)
* Take-off time
sched(i + h, 5) = sched(, 8) + (sched(i + h, 2) - sched(i, 2)) * (rpvals(ind, 6) / recrqmts(ind, 3)) - sched(i + h, 11) /
tankers(3, 3)
' Time of refueling
sched(i + h, 8) = sched(i + h, 5) + sched(i + h, 11) / tankers(3, 3)
h=h+1
Wend
TOA = ((missplan(ind, 7) - rpvals(ind, 8)) / recrgmts(ind, 3)) + sched(i, 8)
sched(i, 10) = TOA
TOD = TOA - (missplan(ind, 7) / recrgmts(ind, 3))
sched(i, 9) = TOD

If sched(i, 1) & sched(i, 2) = sched(i + 1, 1) & sched(i + 1, 2) Then
sched(i + 1, 5) = sched(i, 5)
sched(i + 1, 10) = sched(i, 10)
sched(i + 1, 9) = sched(i, 9)

73

End if
End If
DV({DVmove, 9) =1

' Display the current variable being removed.
If Sheets("INPUT").Cells(4, 8) = "S" Then
DV(k, 13) = DV(DVmove, 1) & DV(DVmove, 2) & DV(DVmove, 3)
Else
DV(k, 13) = DV(DVmove, 1) & DV(DVmove, 2)
End i
* Display the mission evaulation value for the current iteration.
DV(k, 14) = DV(DVmove, 10)
Fori=1To DVcount - 1
IfDV(, 11) >=1 Then DV(i, 11) =DV(, 11) - 1
Next i

* If this move produces a new best solution, change the bestVal and
' record this new solution in the bestSol array.
If DV(DVmove, 10) = bestVal Then
Fori=1 To RPcount
Forn=1To 15
bestSol(i, n) = sched(i, n)
Nextn
Next i
End If

'Print the; current; solution

' Sheets("OTHER DATA").Select

* For p =1 To RPcount

' Forq=1To 15

' Cells(RPcount * (k - 1) + (p + 1), q) = sched(p, q)
' Nextq '

' Nextp

Nextk

‘Output data to worksheets
Sheets("MISSION PLAN").Select
Range("A2:K207").Clear
For p = 1 To missions
* Forq=1To 11
Cells(p + 1, q) = missplan(p, q)

Next q
Next p
'Range("B2:B500").Select
‘Selection.NumberFormat = _
' "000 ""deg"" 00.0 ""min N"";000 ""deg"" 00.0 ""min $"""
'Range("C2:C500").Select
'Selection.NumberFormat = __
' "000 ""deg"" 00.0 ""min W"";000 ""deg"" 00.0 ""min E"""
'Range("D2:D500").Select
'Selection.NumberFormat = _
' "000 ""deg"" 00.0 ""min N"";000 ""deg"" 00.0 ""min §"""
'Range("E2:E500").Select
'Selection.NumberFormat = _
' "000 ""deg"" 00.0 ""min W"";000 ""deg"" 00.0 ""min E"""
Sheets("REFUELING POINTS").Select
Range("A2:V207").Clear
For p = 1 To missions

Forq=1To 20

Cells(p + 1, q) = rpvals(p, q)

Next q
Nextp
Range("B2:B500").Select

74

Selection.NumberFormat = _

"000 ""deg"" 00.0 ""min N"";000 ""deg"" 00.0 ""min $"""
Range("C2:C500").Select
Selection.NumberFormat = _

000 ""deg"" 00.0 ""min W"";000 ""deg"" 00.0 ""min E"""
Range("D2:D500").Select
Selection.NumberFormat = _

"000 ""deg"" 00.0 ""min N"";000 ""deg"" 00.0 ""min §"""
Range("E2:E500").Select
Selection.NumberFormat = _

"000 ""deg"" 00.0 ""min W"";000 ""deg"" 00.0 ""min E"""
Range("J2:3500").Select
Selection.NumberFormat = _

"000 ""deg"" 00.0 ""min N"";000 ""deg"" 00.0 ""min S"""
Range("K2:K500").Select
Selection.NumberFormat = _

000 ""deg"" 00.0 ""min W"";000 ""deg"" 00.0 ""min E"""
Range("L2:L500").Select
Selection.NumberFormat = _

"000 ""deg"" 00.0 ""min N"";000 ""deg"" 00.0 ""min $"""
Range("M2:M500").Select
Selection.NumberFormat = _

"000 ""deg"" 00.0 ""min W"";000 ""deg"" 00.0 ""min E"""
Range("N2:N500").Select
Selection.NumberFormat = _

"000 ""deg"" 00.0 ""min N"";000 ""deg""” 00.0 ""min S"""
Range("02:0500").Select
Selection.NumberFormat = _

"000 ""deg"" 00.0 ""min W"";000 ""deg"" 00.0 ""min E"""
Range("P2:P500").Select
Selection.NumberFormat = _

"000 ""deg"" 00.0 ""min N"";000 ""deg"" 00.0 ""min $"""
Range("Q2:Q500").Select
Selection.NumberFormat = _

"000 ""deg"" 00.0 ""min W"";000 ""deg"" 00.0 ""min E"""
Range("R2:R500").Select
Selection.NumberFormat = __

"000 ""deg"" 00.0 ""min N"";000 ""deg"" 00.0 ""min $"""
Range("S2:5500").Select
Selection.NumberFormat = _

"000 ""deg"" 00.0 ""min W"";000 ""deg"" 00.0 ""min E"""
'For w = 1 To Max([G2:G200])
' Range(Cells(2, 8 + 2 * w), Cells(200, 8 + 2 * w)).Select
' Selection.NumberFormat = _
' "000 ""deg"" 00.0 ""min N"";000 ""deg"" 00.0 ""min §"""
* Range(Cells(2, 9 + 2 * w), Cells(200, 9 + 2 * w)).Select
' Selection.NumberFormat = _
' "000 ""deg"" 00.0 ""min W"";000 ""deg"" 00.0 ""min E"""
'Next w

'Sheets("OFFLOAD CALC").Select
‘Range("A2:J207").Clear

‘For p =1 To missions

' Forq=1To10

! Cells(p + 1, @) = recrqmts(p, q)
' Nextq

‘Next p

Sheets("RP LOCATIONS").Select
Range("A2:3207").Clear
For p =1 To RPcount
Forq=1To 10
Cells(p + 1, @) =1p(p. q)
Nextq
Next p

Sheets("DECISION VARIABLES").Select

75

If Sheets("input").Cells(3, 10) = "Y" Then
'Range("A2:M40000").Clear
For p =1 To DVcount

Forg=1To 11
Cells(p + 1,) =DV(p, @)
Nextq
‘Forq =18 To 30
' Cells(p+1,q9)=DV(p,q)
‘Nextq
Next p
End If

For p = 1 To numiterations
Forq=13To 14
Cells(p + 1, @) =DV(p, q)
Next q
Next p

Sheets("BEST MISSION PLAN").Select
Call displayResults(bestSol, RPcount)
Sheets("FIRST MISSION PLAN").Select
Call displayResults(initSol, RPcount)
Sheets("LAST MISSION PLAN").Select
Call displayResults(sched, RPcount)
Sheets("BEST MISSION PLAN").Select

getTime = (Time - getTime)
Sheets("Input”).Cells(3, 12) = getTime
End Sub

Sub buildRPs(index, num, lat, Ing, part)
RPcount = RPcount + 1
p(RPcount, 1) = index
rp(RPcount, 2) = num
rp(RPcount, 3) = lat
1p(RPcount, 4) = Ing
rp(RPcount, 5) = part
End Sub

Sub displayResults(arrayl As Variant, n As Integer)
Range("A2:0400").Clear
Forp=1Ton
Forq=1To 14
Cells(p + 1, @) = arrayl(p, @)
Nextq
Next p
tankerReuse =0
Forq=1Ton-1
p=1
goon = True
‘While goon = True
If array1(q, 6) & arrayl(q, 3) = arrayl(q + p, 6) & arrayl(q + p, 3) Then
Ifp+q<1iAndq<>iThen
tankerReuse = tankerReuse + 1
goon = False
End If
End If
If p=n Then
goon = False
Else
p=p+1
End If
Wend
Nextq
Cells(n + 3, 5) =n - tankerReuse
Cells(n + 3, 4) = "Tankers Used:"
Cells(n + 4, 5) = Application.Sum(Range(Cells(2, 7), Cells(n + 1, 7)))

76

Cells(n + 4, 4) = "Total Tanker Distance:"
Cells(n + 5, 5) = Application.Max(Range(Cells(2, 10), Cells(n + 1, 10)))
Cells(n + 5, 4) = "Latest Receiver Group TOA:"

End Sub

77

'Subroutine Name: setGWdefaults()
'Functionality: This function sets the default values for the weight

! characteristics of receiver aircraft. Including:

! 1) Minimum Weight Empty

't 2) Payload Weight

! 3) Fuel Weight

! The default values are set in the AIRCRAFT PERFORMANCE sheet

'Arguments: None

Sub setdefaults()

missions = Application.Count(Sheets("INPUT").Range("C7:C207"))
rdata = Sheets("INPUT").Range("A7:P207")

rec = Application.Count(Sheetﬁ("AlRCRAFI' PERFORMANCE").Range("B5:B37"))
receivers = Sheets("AIRCRAFT PERFORMANCE").Range("A5:P37")

Fori=1 To missions
ind = Find(rdata(i, 2), receivers, rec)
Sheets("INPUT").Cells(i + 6, 9) = receivers(ind, 10)
Sheets("INPUT").Cells(i + 6, 10) = receivers(ind, 11)
Sheets("INPUT").Cells(i + 6, 11) = receivers(ind, 5)
Sheets("INPUT").Cells(i + 6, 8) = receivers(ind, 8)
Sheets("INPUT").Cells(i + 6, 7) = receivers(ind, 3)

Nexti

End Sub

‘Subroutine Name: setWddefaults
‘Functionality: This function sets the winds to zero
'Arguments: None
Sub setWddefaults()
missions = Application.Count(Sheets("INPUT").Range("C7:C200"))
For i =1 To missions
Sheets("WINDS").Cells(i + 6, 1) =0
Sheets("WINDS").Cells(i + 6, 2) = 0
Next i

End Sub

78

'Function Name: Ceiling

'Functionality: This function rounds fractional numbers
' to the next highest integer

'Arguments: x - The function finds the ceiling of x
"Return Value: Ceiling - the ceiling of x

Function Ceiling(x)
temp = CInt(x)
templ =temp - x
If temp1 > 0 Then

Ceiling = temp
Else

Ceiling = temp + 1
End If

End Function

Function Max(a, b)
Ifa>b Then

Max=a
Else
Max=b
End If
End Function

Function Floor(x)
temp = Abs(x)
temp = Ceiling(temp)
If x > 0 Then
Floor = temp - 1
Else
Floor = -temp
End If
End Function

'Function Name: Find
'Functionality: This function determines the row position

' of a given aircraft in the distcalc or

! aircraft performance matrices

'Arguments: item - the name of the aircraft to find

! list - the matrix to search

' total - the number of rows in the search matrix

'Return Value: pos - the row position of the aircraft

Function Find(item, list, total)
pos=1
found = False
. While Not found
If StrComp(item, list(pos, 1)) = 0 Then
Find = pos
found = True
Else
pos=pos+1
End If
If pos > total Then
Find = -1
found = True
End If
Wend
End Function

79

'Function Name: fuelburn
'Functnonahty This function is used to determine the fuel
burned by a given fighter for a period of

! flight given by: Flight time = Distance/True Air Speed

! The algorithm assumes a nominal flight altitude and

! true air speed. The fuel flow is calculated with a third

! order polynomial model of the fuel flow depending on gross weight.
! It is assumed that the fighter's fuel is burned down to

! the fuel reserve level and then completely refueled.

'Arguments:’ dist - the distance the fighter will travel

! tas - the true airspeed the fighter will travel at

! r - the fighter performance matrix

! j - the position of the desired fighter in the performance matrix

'Return Value: totfb - total fuel burned over the flight
Function recflburn(dist, rate, fuelcap, reserve, minwt, cargo, climbf, c1, c2, ¢3, c4)

fb=0

totfb = climbf
ff=0
mult=0

gw=0
gwi = fuelcap + minwt + cargo
maxburn = fuelcap - reserve

Flighttime = dist / rate
dt=0.01

For t =1 To Flighttime * 100
Nar = Ceiling(totfb / maxburn) - 1
gw = gwi - totfb + Nar * maxburn
ff=cl+c2*gw+c3*gw*gw+cd*gw*gw*gw
fb=ff*dt
totfb = totfb + fb

Next t

recflburn = totfb
End Function
Function tnkrflburn(dist, rrate, trate, rgs, tgs, fuelcap, reserve, minwt, cargo, climbf, ralt, talt, c1, ¢2, 3, ¢4, ¢5, c6, c7, test)

t=0

dt=0.01

maxburn = fuelcap - reserve
fb=0

ff=0

gw=0

gwi = fuelcap + minwt + cargo
totfb = climbf

If StrtComp(test, "F") = 0 Then
fltm = 0.5 * dist/ rgs + 0.5 * dist / tgs
Elself StrComp(test, "R") = 0 Then
fltm = dist / rgs
Else
fltm = dist / tgs
End If

While t < fltm * 100

If StrComp(test, "F") = 0 Then
Ift * dt < 0.5 * fltm Then

80

alt =ralt
TAS = rrate
Else
alt = talt
TAS = trate
End If
Else
alt = talt
TAS = trate
End If

gw = gwi - totfb

fllow=cl +c2 *alt+c3 * alt * alt + c4 * TAS + c5 * TAS * TAS +c6 * gw +c7 * gw * gw
b = fflow * dt

totfb = totfb + fb

t=t+1

Wend
tnkrflburn = totfb

End Function

81

'Module: DistCalc
'Function: This module contains the functions for calculating the great circle
! distance from the origin to the destination bases

'Function Name: DecDeg

'Functionality: To decode the DDDMM.M format (where D=degrees, M=Minutes) for Latitude
! and Longitude to degrees.

'Arguments: Number - Value passed to function in DDDMM.M format

'Return Value: Temp - the Latitude or Longitude in degrees

Private Function DecDeg(Number)
num = Abs(Number) ' Get absolute value of Number to use in Int()
temp = Int(num / 100) + (num / 100 - Int(num/ 100)) / 0.6
' Convert by separating integer degrees from

' minutes portion. Then divide minutes by 60
' to get fractional degrees and add to integer

' degrees.
If num > Number Then ' Check that Temp has same sign (+/-) as Number
temp = -temp ' before assigning to return value
End If)
DecDeg = temp ' Assign Temp to function’s return value
End Function
Function DegDec(Number)

num = Abs(Number)
temp = (Floor(num) * 100) + (60 * (num - Floor(num)))
If Number < 0 Then temp = -temp

DegDec = temp
End Function

'Function Name: GreatCircleDistance
'Functionality: To compute great circle distance between two points on Earth. Points

' are (Latitudel, Longitudel) and (Latitude2, Longitude2). This function
! accepts latitude and longitude in real degrees or in DDDMM.M format.
'Arguments: latitudel - origin latitude

! longitudel - orgin longitude

! latitude2 - destination latitude

! longitude?2 - destination longitude

'Return Value: GreatCircleDistance - the great circle distance
Function GreatCircleDistance(latitudel, longitudel, latitude2, longitude2)

Deg2Rad = 3.14159265358979 /180 'Define constants
Rad2Deg = 180/ 3.14159265358979 'for angle conversions
NMperDeg = 60

lat1 = latitudel
lat2 = latitude2
Jong1 = longitudel
long2 = longitude2

If (Abs(lat1) > 90) Or (Abs(lat2) > 90) Or (Abs(longl) > 180) Or (Abs(long2) > 180) Then
lat! = DecDeg(lat]l) ' Assumes all coordinates are in same
lat2 = DecDeg(lat2) ' format. If any are found in DDDMM.M
longl = DecDeg(longl) ' format then convert all to degrees.

82

long2 = DecDeg(long2)
End If

latl =latl * Deg2Rad ' Convert all degrees to radians
lat2 = lat2 * Deg2Rad

longl =longl * Deg2Rad

long2 =1long2 * Deg2Rad

temp = Cos(lat1) * Cos(lat2) * Cos(long2 - longl)

temp = Application.Acos(temp + Sin(lat1) * Sin(lat2)) * Rad2Deg
' Calculated the angle of the great circle
' arc between the two points. Formula
' came from original AMCSAF Distcalc
' spreadsheet. Uses Excel's ACOS().

GreatCircleDistance = NMperDeg * temp ' Convert arc degrees to NM and return
End Function :
Function getAz(latitudel, longitudel, latitude2, longitude2)

Deg2Rad = 3.14159265358979 /180 'Define constants
Rad2Deg = 180/ 3.14159265358979 'for angle conversions
NMperDeg = 60

lat1 = latitudel

long1 = longitudel

lat2 = latitude2

long2 = longitude2

dist = GreatCircleDistance(lat1, longl, lat2, long2)

If (Abs(1at2) > 90) Or (Abs(long1) > 180) Or (Abs(long2) > 180) Then
1at] = DecDeg(latl) ' Assumes all coordinates are in same
1at2 = DecDeg(lat2) ' format. If any are found in DDDMM.M
longl = DecDeg(longl) ' format then convert all to degrees.
long2 = DecDeg(long2) i

End If

lat1 = latl * Deg2Rad
lat2 = 1at2 * Deg2Rad
longl =longl * Deg2Rad
long2 =long2 * Deg2Rad
dist = dist / NMperDeg
dist = dist * Deg2Rad

sinAz = (Cos(lat2) * Sin(long2 - long1) / Sin(dist))
cosAz = ((Sin(lat2) - (Cos(dist) * Sin(lat1))) / (Sin(dist) * Cos(lat1)))
If sinAz >= 0 And cosAz >= 0 Then
temp = Application.Asin(sinAz)
Elself sinAz >= 0 And cosAz < 0 Then
temp = 3.14159265358979 - Application. Asin(sinAz)
Elself cosAz >= 0 Then
temp = -Application. Acos(cosAz)
Else
temp = -(3.14159265358979 + Application.Asin(sinAz))
End If
temp = temp * Rad2Deg
getAz = temp
End Function
Function getLat(latitudel, distance, azymuth)

Deg2Rad = 3.14159265358979 /180 'Define constants
Rad2Deg = 180/ 3.14159265358979 ‘for angle conversions
NMperDeg = 60

latl = latitudel

dist = distance
Az = azymuth

83

If (Abs(lat1) > 90) Then latl = DecDeg(lat1)

lat] = lat1 * Deg2Rad
dist = dist / NMperDeg
dist = dist * Deg2Rad
Az = Az * Deg2Rad

temp = Application.Acos(Sin(lat1) * Cos(dist) + Cos(lat1) * Sin(dist) * Cos(Az))
temp = temp * Rad2Deg
temp =90 - temp
getLat = DegDec(temp)
End Function
Function getLong(longitudel, distance, azymuth, latitudeRP)

Deg2Rad = 3.14159265358979 /180 'Define constants
Rad2Deg = 180 /3.14159265358979 'for angle conversions
NMperDeg = 60

long1 = longitudel
dist = distance
Az = azymuth
1atRP = latitudeRP

If (Abs(long1) > 90) Or (Abs(latRP) > 90) Then
longl = DecDeg(longl) »
1atRP = DecDeg(latRP)

End If

dist = dist / NMperDeg
dist = dist * Deg2Rad

Az = Az * Deg2Rad
1atRP = 1atRP * Deg2Rad
longl = longl * Deg2Rad

temp = Application.Asin(Sin(dist) * Sin(Az) / Cos(latRP))
temp = temp + longl
temp = temp * Rad2Deg
If temp > 180 Then temp = temp - 360
getLong = DegDec(temp)
End Function

Function TrueCourse(dist, latitudel, longitudel, latitude2, longitude2)

Deg2Rad = 3.14159265358979/ 180 'Define constants
Rad2Deg = 180/ 3.14159265358979 'for angle conversions
p =3.1415926535897

lal = latitudel
1g1 = longitudel
1a2 = latitude2
1g2 = longitude2

If (Abs(lal) > 90) Or (Abs(la2) > 90) Or (Abs(Igl) > 180) Or (Abs(1g2) > 180) Then
lal = DecDeg(lal) ' Assumes all coordinates are in same
a2 = DecDeg(la2) ' format. If any are found in DDDMM.M
Ig1 = DecDeg(Igl) ' format then convert all to degrees.
1g2 = DecDeg(1g2) '
End If

lal =lal * Deg2Rad ' Convert all degrees to radians
1a2 =1a2 * Deg2Rad

Ig1 =1g1 * Deg2Rad

1g2 =1g2 * Deg2Rad

D = (dist / 60) * Deg2Rad

H1 = Application.Acos((Sin(la2) - Sin(lal) * Cos(D)) / (Sin(D) * Cos(lal)))
H2 = Application.Acos((Sin(lal) - Sin(1a2) * Cos(D)) / (Sin(D) * Cos(1a2)))

84

If Sin(lg2 - 1g1) <0 Then
Hil =H1

Else
Hil=2*p-Hl

End If

If Sin(lg1 - 1g2) < 0 Then
Hi2 =H2

Else
Hi2=2*p-H2

End

If Hi2 >=p Then
Hi2=Hi2 - p
Else
Hi2=Hi2 +p
End If
TrueCourse = (Hil + Hi2) / 2 * Rad2Deg

End Function
Function GroundSpéed(TAS, TC, Wd, Wv)

Deg2Rad = 3.14159265358979 /180 'Define constants
Rad2Deg = 180/ 3.14159265358979 'for angle conversions

TCr = TC * Deg2Rad

Wdr = Wd * Deg2Rad

DCA = Application. Asin((Wv / TAS) * Sin(Wdr - TCr))
GroundSpeed = TAS * Cos(DCA) - Wv * Cos(Wdr - TCr)

End Function

85

Bibliography

Battiti, R. “Reactive search: Toward self-tuning heuristics,” Modern Heuristic Search
Methods, Rayward-Smith (ed.), John Wiley and Sons Ltd: 61-83, 1996.

Battiti, R. and G. Tecchiolli. “The reactive tabu search,” ORSA Journal on Computing,
6(2): 126-140, 1994.

Ben-Daya, M. and M. Al-Fawzan. “A tabu search approach for the flow shop scheduling
problem,” European Journal of Operational Research, v109, 88-95, 1998.

Committee on the Next Decade of Operations Research (CONDOR) “Operations
Research: The Next Decade,” Operations Research, Vol. 36: 619-637, 1988.

Congress of the United States Congressional Budget Office. Modernizing the Aerial
Tanker Fleet: Prospects for Capacity, Timing, Cost. Washington: Congressional
Budget Office, 1985.

Glover, F. “Future Paths for Integer Programming and Links to Artificial Intelligence,”
Computers and Operations Research, Vol. 13: 533-539, 1986.

Glover, F. “Tabu Search: A Tutorial,” Interfaces, Vol. 20: 74-94, 1990.
Glover, F. and M. Laguna. Tabu Search. Boston: Kluwer Academic Publishers, 1997.

Hostler, H. Air Refueling Tanker Scheduling. Air Force Institute of Technology,
Wright-Patterson AFB, OH, 1987.

Logicon. “Combined Mating And Ranging Planning System Overview.” Slide
presentation, Information Technology Group, Logicon Inc, 1996.

Russina, B., Ruthsatz, B., and Russ. “The Quick Look Tool for Tanker Deployment.”
* Center for Optimization and Semantic Control. Washington University, St. Louis,
MO, 1999.

Silver, E., Vidal R., and D. Werra. “A tutorial on heuristic methods,” Europen Journal
of Operational Research, Vol. 5, 153-162, 1980.

Woodruff, D.L., and Zemel, E., “Hashing vectors for tabu search,” Annals of Operations
Research, Vol. 41: 123-137, 1993.

Zanakis, S.H. “Heuristic ‘Optimization’: Why, When, And How To Use It,” Interfaces,
Vol. 11, 1981.

86

